Coherent and Non-Coherent UWB Communications

José A. López-Salcedo Advisor: Prof. Gregori Vázquez

Ph.D. Dissertation

Signal Processing for Communications Group Department of Signal Theory and Communications Universitat Politècnica de Catalunya (UPC)

(中) (종) (종) (종) (종) (종)

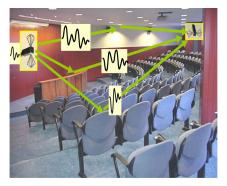
Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions
00000	0000000000	00000000	0000000	000000	000

INTRODUCTION AND MOTIVATION

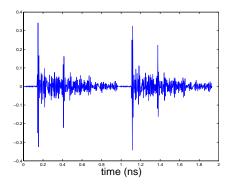
Ph.D. Coherent and Non-Coherent UWB Communications

Introduction ●0000	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions		
Fundamentals of UWB Technology							
Basic featu	res						

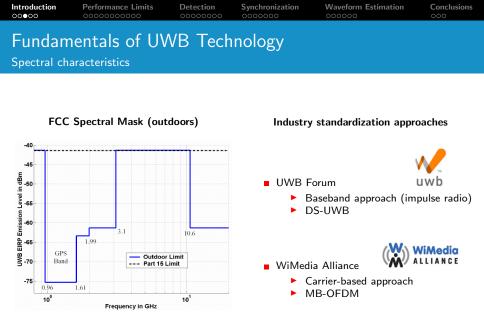
- It is the oldest but least explored form of radio communication
- Main characteristics:
 - Impulsive transmission (i.e. no continuous wave)
 - Very large spectral occupancy
- Advantages:
 - Low-complexity due to baseband transmission (i.e. no RF)
 - Extremely-short pulses \Rightarrow high data-rates
 - \Rightarrow multipath immunity
 - $\Rightarrow {\sf precise \ positioning}$
 - Low power pulses \Rightarrow low probability of interception
 - High penetration capability


向下 イヨト イヨト

 Introduction
 Performance Limits
 Detection
 Synchronization
 Waveform Estimation
 Conclusions


 Fundamentals of UWB Technology
 Conclusions
 Conclusions

Temporal characteristics

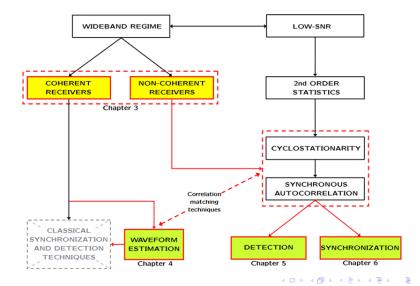

Frequency-Selective and Direction-Dependent Propagation

Typical UWB Received Waveforms (Unknown Aggregated Response)

Coherent and Non-Coherent UWB Communications

イロト イヨト イヨト イヨト Ph.D. Coherent and Non-Coherent UWB Communications

э



Motivation and Objectives of this Dissertation

- Motivation of this dissertation:
 - Evaluate the impact of pulse distortion in UWB communications
 - Design robust signal processing techniques for UWB receivers
 - Evaluate the performance loss with unknown received waveforms
 - Design optimal detectors to cope with the absence of CSI
 - Design optimal non-coherent and non-assisted timing synchronizers
 - Design waveform estimation techniques for low-SNR scenarios

Introduction 0000●	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions

Roadmap

Ph.D. Coherent and Non-Coherent UWB Communications

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions

PERFORMANCE LIMITS FOR COHERENT & NON-COHERENT UWB

 J. A. López-Salcedo, G. Vázquez, "Closed-Form Upper Bounds for the <u>Constellation-Constrained Capacity of UWB Communications</u>", Proc. IEEE ICASSP'2007, Hawaii (USA), April 2007.

Ph.D. Coherent and Non-Coherent UWB Communications

Controversial result by Kennedy (1969) and Telatar (2000):

$$\mathsf{C}^{\mathsf{AWGN}}_{W \to \infty} = \mathsf{C}^{\mathsf{no} \ \mathsf{CSI}}_{W \to \infty} = \frac{P_S}{N_0} \log_2 \epsilon$$

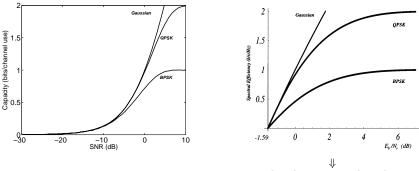
But, does UWB capacity -really- depend on CSI?

YES when taking into consideration:

- the actual effect of finite bandwidth
- peakiness constraints

How to analyze capacity in the wideband regime?

Introducing the spectral efficiency ratio $\left(\frac{R}{W}\right) \Rightarrow \frac{SNR}{\frac{R}{W}} = \frac{E_{b}}{N_{0}}$



Capacity in the Wideband Regime

The same magnitude, two different perspectives

Capacity vs. SNR

Capacity vs. E_b/N_0

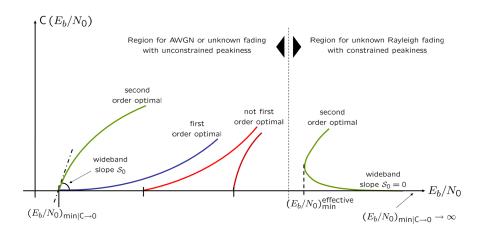
SPECTRAL EFFICIENCY

э

- Key parameters for analyzing spectral efficiency [Verdu(2002)]:
 - Local analysis of capacity around SNR = 0

$$\mathsf{C}(\mathsf{SNR}) = \mathsf{C}'(0)\mathsf{SNR} + \frac{1}{2}\mathsf{C}''(0)\mathsf{SNR}^2 + \mathsf{o}\bigl(\mathsf{SNR}^2\bigr)$$

Minimum required bit energy for reliable communication:


$$\left(\frac{E_b}{N_0}\right)_{\rm min} = \frac{1}{{\rm C}'\left({\rm SNR}=0\right)}$$

Wideband slope or capacity increase per 3 dB of E_b/N₀,

$$\mathcal{S}_0 = -2 rac{\left[\mathsf{C}'\left(\mathsf{SNR}=0
ight)
ight]^2}{\mathsf{C}''\left(\mathsf{SNR}=0
ight)} \qquad (\mathsf{bits/s/Hz/3dB})$$

Capacity in the Wideband Regime Wideband Optimality

Ph.D. Coherent and Non-Coherent UWB Communications

・ロト ・回ト ・ヨト ・ヨト

3

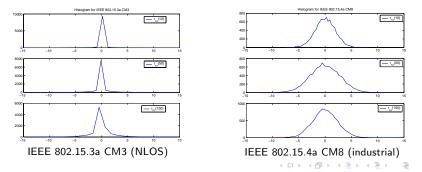
 Introduction
 Performance Limits
 Detection
 Synchronization
 Waveform Estimation
 Conclusions

 Capacity in the Wideband Regime
 Wideband Optimality
 Wideband Optimality
 Wideband
 <td

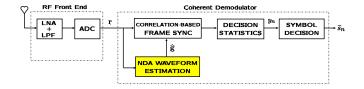
Results for AWGN and unknown Rayleigh fading channels

		$(E_b/N_0)_{\min}$	\mathcal{S}_0
Unconstrained peakiness	AWGN	$\log 2$	2
	Unknown Rayleigh fading	$\log 2$	0
Constrained peakiness	AWGN	$\log 2$	2
	Unknown Rayleigh fading	∞	0

Concept of wideband optimality

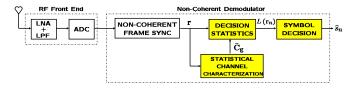

- ▶ 1st Order optimal : $\left(\frac{E_b}{N_0}\right)_{\min} = \left(\frac{E_b}{N_0}\right)_{\min}^{\text{AWGN}}$
- > 2nd Order optimal : if 1st order optimal and S₀ is achieved

・ロト ・回ト ・ヨト ・ヨト


- UWB channel modeling is rather controversial.
- However, for some working conditions:

Gaussian assumption holds \Rightarrow easy statistical formulation

Ph.D. Coherent and Non-Coherent UWB Communications



- Statistics for coherent PPM: $f(\mathbf{y}|\mathbf{x}_i, \mathbf{g}) \sim \mathcal{N}(\mathbf{h}_i, \mathbf{C}_w)$
- Closed-form upper bound for the constellation-constrained capacity:

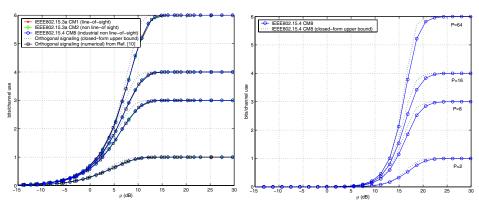
$$\mathsf{C}_{\mathsf{c}\,|\,\mathrm{coh}} \le \log_2 P - \log_2 \left(1 + (P-1) \exp\left(-\frac{\rho}{2}\right) \right)$$

Ph.D. Coherent and Non-Coherent UWB Communications

- Statistics for non-coherent PPM: $f(\mathbf{y}|\mathbf{x}_i) \sim \mathcal{N}(0, \mathbf{C}_w + \mathbf{C}_{\mathbf{h}_i})$
- Closed-form upper bound for the constellation-constrained capacity:

$$C_{c \mid \text{no-coh}}^{\text{US}} \le \log_2 P - \frac{1}{P} \sum_{i=0}^{P-1} \log_2 \sum_{j=0}^{P-1} \exp\left(-\frac{1}{2} \sum_{k=0}^{N_{ss}-1} \frac{\gamma_i(k) - \gamma_j(k)}{\sigma_w^2 + \gamma_j(k)}\right)$$

イロト イポト イヨト イヨト



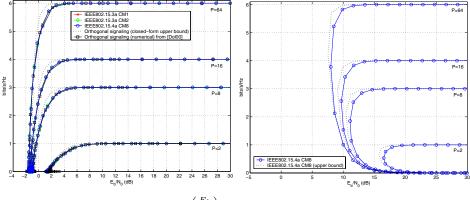
Capacity Upper Bounds for UWB Communications

Coherent vs. Non-coherent receivers

Coherent receivers

Non-coherent receivers (US)

← □ ▷ < ② ▷ < ≧ ▷ < ≧ ▷ ≥ ♡○</p>
Ph.D. Coherent and Non-Coherent UWB Communications



Capacity Upper Bounds for UWB Communications

Coherent vs. Non-coherent receivers

Coherent receivers

Non-coherent receivers (US)

$$\left(\frac{E_b}{N_0}\right)_{|\min} = \frac{\rho}{2C(\rho)}$$

イロン 不同と 不同と 不同と Ph.D. Coherent and Non-Coherent UWB Communications

э

 Introduction
 Performance Limits
 Detection
 Synchronization
 Waveform Estimation
 Conclusions

 Capacity
 Upper
 Bounds for
 UWB
 Communications
 Some Conclusions

Then, which is the most convenient approach? Coherent? Non-coherent?

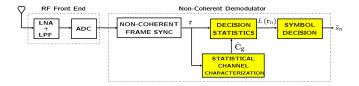
Channel	Available	Detection	Observations
time variation	CSI	approach	
slow	yes	coherent	-Excellent performance but,
			how to obtain perfect CSI?
moderate/rapid	no	non-coherent	-Low-complexity but,
			penalty for no CSI
			-Efficiency problem when $P \uparrow\uparrow$

イロン イヨン イヨン イヨン

3

 Introduction
 Performance Limits
 Detection
 Synchronization

 00000
 000000000
 00000000
 0000000

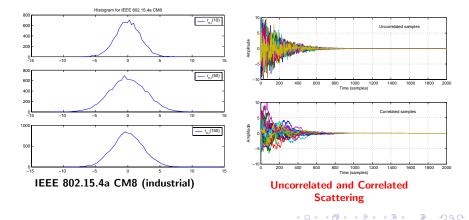

NON-COHERENT DETECTION OF UWB RANDOM SIGNALS

 J. A. López-Salcedo, G. Vázquez, "Detection of UWB Random Signals", Under second review in IEEE Trans. on Signal Processing, May 2006.

Introduction	Performance Limits	Detection ●0000000	Synchronization	Waveform Estimation	Conclusions
Motivat	ion				

How to detect information symbols from UWB signals?

Channel	Available	Detection	Receiver
time variation	CSI	approach	implementation
slow	yes	coherent	correlator-based
moderate	no	non-coherent	transmitted-reference (TR)
rapid	no	non-coherent	statistics-based (?)



・ロト ・回ト ・ヨト ・ヨト Ph.D. Coherent and Non-Coherent UWB Communications

æ

 \blacktriangleright Received waveforms \sim Gaussian distributed with exponential PDP $_{- \mbox{[Kar04], [Sch05b]}}$ -

Ph.D. Coherent and Non-Coherent UWB Communications

Introduction Performance Limits Detection Synchronization Waveform Estimation Conclusions Optimal Decision Statistics

Decision based on the Generalized Likelihood Ratio Test (GLRT)

$$L(\mathbf{r}_{n}|\mathbf{C}_{\mathbf{g}}) \doteq \log \frac{f(\mathbf{r}_{n}|\mathcal{H}_{+};\mathbf{C}_{\mathbf{g}})}{f(\mathbf{r}_{n}|\mathcal{H}_{-};\mathbf{C}_{\mathbf{g}})} \quad \Rightarrow \quad \hat{s}_{n} = \operatorname{sign}\left(L(\mathbf{r}_{n}|\mathbf{C}_{\mathbf{g}})\right)$$

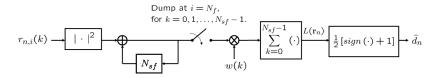
Low-SNR optimal decision statistics (GLRT):

$$L'(\mathbf{r}_n | \mathbf{C}_g) = Tr(\underbrace{[\mathbf{C}_+ - \mathbf{C}_-]}_{\mathbf{R}_n} \widehat{\mathbf{R}}_n)$$

2nd order correlation template

- Consistent with traditional but *ad-hoc* energy detection schemes
- Extends deterministic correlation receivers to second order statistics
- Insensitive to narrowband interferences

イロト イポト イヨト イヨト


Uncorrelated Scattering Assumption

Low-SNR US optimal decision statistics:

$$L'(\mathbf{r}_n) = \sum_{k=0}^{N_{sf}-1} w(k) \sum_{i=0}^{N_f-1} r_{n,i}^2(k)$$

Optimal statistics become a pure energy detector, but...
 incoming samples are weighted according to their SNR

Allows a simple receiver implementation:

Coherent and Non-Coherent UWB Communications

Correlated Scattering Assumption

Low-SNR CS optimal decision statistics:

$$L'(\mathbf{r}_n | \mathbf{C}_{\mathbf{g}}) = Tr(\underbrace{\left[\mathbf{C}_+ - \mathbf{C}_-\right]}_{\mathbf{R}_n} \widehat{\mathbf{R}}_n)$$

unknown!!

Proposed Conditional log-GLRT

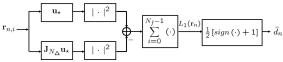
1. Estimate \mathbf{C}_{+} from incoming data: $vec\left(\widehat{\mathbf{C}}_{+}\right) = \mathbf{A}_{\mathrm{S}}^{-1}vec\left(\widehat{\mathbf{R}} - \mathbf{C}_{\mathrm{N}}\right)$

- 2. Create the correlation template: $vec\left(\widehat{\mathbf{C}}_{+}-\widehat{\mathbf{C}}_{-}\right)=\mathbf{A}_{\mathrm{D}}^{T}vec\left(\widehat{\mathbf{C}}_{+}\right)$
- 3. Compress the estimated template into the low-SNR GLRT:

$$L'(\mathbf{r}_{n}) = \underbrace{vec^{T}\left(\widehat{\mathbf{R}} - \mathbf{C}_{N}\right)\left(\mathbf{A}_{S}^{T}\right)^{-1}\mathbf{A}_{D}^{T}vec\,\widehat{\mathbf{R}}_{n}}_{\mathbf{A}_{S}^{T}}$$

hypothesis testing template

イロン イヨン イヨン イヨン


 Introduction
 Performance Limits
 Detection
 Synchronization
 Waveform Estimation
 Conclusions

 00000
 00000000
 0000000
 0000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Optimal Decision Statistics

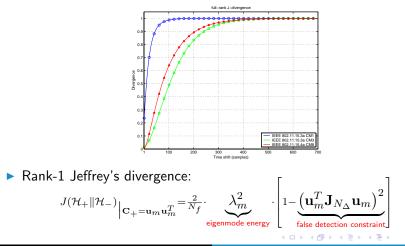
Rank-1 Receiver via Jeffrey's Divergence Maximization

Rank-1 receiver:

Rank-1 filter design criterion:

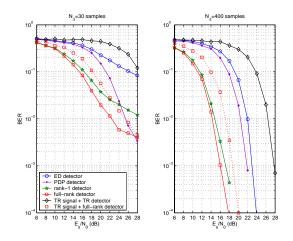
$$\mathbf{u}_{\star} = \arg \max_{\mathbf{u}_m} J(\mathcal{H}_+ \| \mathcal{H}_-)_{|\mathbf{C}_+ = \mathbf{u}_m \mathbf{u}_m^T}$$

Jeffrey's divergence:


$$J\left(\mathcal{H}_{+} \| \mathcal{H}_{-}\right) \doteq \mathsf{E}_{\mathbf{r}_{n} | \mathcal{H}_{+}}\left[L(\mathbf{r}_{n})\right] - \mathsf{E}_{\mathbf{r}_{n} | \mathcal{H}_{-}}\left[L(\mathbf{r}_{n})\right]$$

Optimal Decision Statistics

Rank-1 Receiver via Jeffrey's Divergence Maximization


For the problem at hand: $J(\mathcal{H}_+ || \mathcal{H}_-) = ||\mathbf{C}_+ - \mathbf{C}_-||_F^2$

Ph.D. Coherent and Non-Coherent UWB Communications

Introduction	Performance Limits	Detection 0000000●	Synchronization	Waveform Estimation	Conclusions

Simulation Results

Simulation parameters:

- 2-PPM in CS scenario
- Gaussian random waveforms
- Exp-Ds=100 samples, Exp-Cs=200 samples
- $N_f = 20, N_{sf} = 2000, L = 500$
- Channel changes every two frames

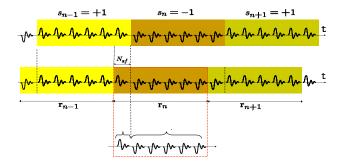
Conclusions:

- ED and PDP significantly degrade
- Rank-1 near-optimal performance when increasing N_{Δ}

Introduction	Performance Limits	Detection	Syn

Synchronization

NON-COHERENT TIMING SYNCHRONIZATION

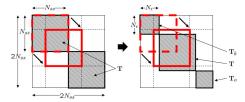

- J. A. López-Salcedo, G. Vázquez, "Waveform Independent Frame-Timing Acquisition for UWB Signals", IEEE Trans. on Signal Processing, Vol. 55, No. 1, January 2007.
- J. A. López-Salcedo, G. Vázquez, "Frame-Timing Acquisition for UWB Signals via the Multifamily Likelihood Ratio Test", IEEE SPAWC, Cannes (France), June 2006.

向下 イヨト イヨト

How to synchronize when the received waveform is unknown?

Ph.D. Coherent and Non-Coherent UWB Communications

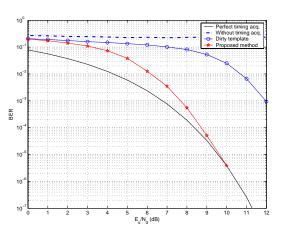
イロン イヨン イヨン イヨン


3

Low-SNR Unconditional Maximum Likelihood (UML) criterion:

$$\widehat{N}_{\epsilon}^{\mathsf{UML}} = \arg \max_{0 \le m \le (N_f - 1)} \| \mathbf{\Pi}^T(m) \mathbf{R}_2(0) \mathbf{\Pi}(m) \|_F^2$$

Interpretation as an energy detection technique


Matrix \mathbf{R}_2 when no timing error is present

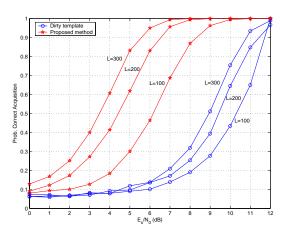
Matrix \mathbf{R}_2 when a timing error $\tau = N_{\epsilon}N_{sf} + \epsilon$ is present

← □ ▷ < □ ▷ < ⊇ ▷ < ⊇ ▷ ▷ ⊇ ♡ ○</p>
Ph.D. Coherent and Non-Coherent UWB Communications

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions
.					

Simulation Results Direct UML Approach

Simulation parameters:


- 2-PAM
- IEEE 802.15.3a CM1
- $T_f = 86$ ns, $N_f = 16$, L = 200
- Uniformly distributed timing error

Conclusion:

 Much more robust performance compared to existing techniques (DT)

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions
Simulat	ion Poculto				

Direct UML Approach

Simulation parameters:

- 2-PAM
- IEEE 802.15.3a CM1
- $T_f = 86 \text{ ns}, N_f = 16,$ L = 200
- Uniformly distributed timing error

Conclusion:

 Probability of correct acquisition can be improved up to a factor of 8 compared to DT

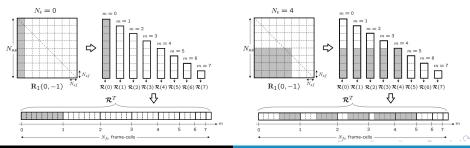
æ

Proposed Frame-Timing Acquisition Technique (II) Multifamily Likelihood Ratio Test Approach

Detection

Introduction

Performance Limits


Complexity can be reduced by reformulating the UML criterion as

$$\widehat{N}_{\epsilon}^{\mathsf{UML}} = \arg \max_{0 \le m \le N_f - 1} \|\mathbf{R}_1(0, -1)\|_F^2$$

$$\mathbf{R}_k(m, l) \doteq E [\mathbf{r}_n(m) \mathbf{r}_{n+k}^T(m+l)]$$

Synchronization

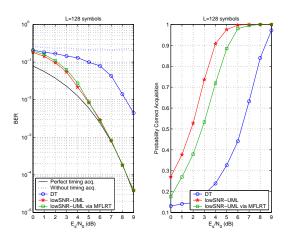
Timing acquisition becomes a model order detection problem

Ph.D. Coherent and Non-Coherent UWB Communications

Waveform Estimation

Conclusions

- How to determine the length of an unknown signal?
 - Multifamily Likelihood Ratio Test (MFLRT) [Kay05]
 - Reformulation of the UML cost function:


$$\begin{split} \widehat{N}_{\epsilon}^{\mathsf{MFLRT}} &= \arg \max_{0 \le m \le (N_f - 1)} T_m(\boldsymbol{\mathcal{R}}) \\ T_m(\boldsymbol{\mathcal{R}}) &= \left[\underbrace{L_m(\boldsymbol{\mathcal{R}})}_{\mathsf{log-Likelihood}} - \underbrace{N_u(m)\left(\ln\left(\frac{L_m(\boldsymbol{\mathcal{R}})}{N_u(m)}\right) + 1\right)}_{\mathsf{model order penalty}} \right] u\left(\frac{L_m(\boldsymbol{\mathcal{R}})}{N_u(m)} - 1\right) \end{split}$$

Ph.D. Coherent and Non-Coherent UWB Communications

イロト イポト イヨト イヨト

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions
			000000		

Simulation Results Multifamily Likelihood Ratio Test Approach

Simulation parameters:

- 2-PAM
- IEEE 802.15.3a CM1
- $T_f = 46 \text{ ns, } N_f = 8, \\ L = 128$
- Uniformly distributed timing error

Conclusion:

 No performance degradation in terms of BER

Introduction Per	rformance Limits [Detection S	Synchronization	Waveform Estimation	Conclusio
00000 00	000000000 0	00000000	0000000	000000	000

WAVEFORM ESTIMATION FOR COHERENT RECEIVERS

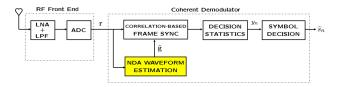
- J. A. López-Salcedo, G. Vázquez, "NDA Waveform Estimation in the Low-SNR Regime", IEEE Trans. on Signal Processing, accepted for publication.
- J. A. López-Salcedo, G. Vázquez, "NDA Maximum-Likelihood Waveform Identification by Model Order Selection in Digital Modulations", IEEE SPAWC, New York (USA), June 2005.

通 と く ヨ と く ヨ と

ons

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions
Motivat	ion				

- How to obtain (perfect) channel state information?
- Problems:
 - Traditional channel estimation techniques require high SNR...
 <u>but</u> UWB operates in the low-SNR regime
 - Estimating the channel response may imply hundreds of delays and amplitudes to be estimated


Proposed approach:

- Unstructured approach for estimating the whole waveform
- The low-SNR Maximum Likelihood criterion is adopted
- Nondata-aided approach to avoid pilot symbols

・ 同 ト ・ ヨ ト ・ ヨ ト

Signal Model

General signal model for PAM, PPM and APPM modulations:

$$\mathbf{r} = \sum_{p=0}^{P-1} \mathbf{A}_p(\mathbf{g}) \mathbf{x}_p + \mathbf{w} \quad \Rightarrow \quad \mathbf{r} = \sum_{p=0}^{P-1} \sum_{n=-K}^{K} x_{n,p} \mathbf{K}_{n,p} \mathbf{g} + \mathbf{w}$$

Ph.D. Coherent and Non-Coherent UWB Communications

Maximum Likelihood Estimation

Low-SNR Approximation

Optimal ML waveform estimate:

$$\widehat{\mathbf{g}}_{\mathrm{ML}} = \arg\max_{\mathbf{g}} \Lambda\left(\mathbf{r} | \mathbf{g}; \mathbf{x}\right)$$

The low-SNR approximation leads to a compact log-Likelihood cost function

$$L'(\mathbf{r}|\mathbf{g}) = \underbrace{Tr\left(\breve{\mathbf{M}}\left[\mathbf{R} - \sigma_w^2 \mathbf{I}_{N_r}\right]\right)}_{\text{Correlation Matching}} + \underbrace{\frac{1}{2} \|\breve{\mathbf{M}}\|_F^2}_{\text{Correlation Constraint}}$$

Correlation iviatching

2nd Order Constraint

$$\breve{\mathbf{M}} \doteq \sum_{p=0}^{L_p-1} \sum_{n=-K_r}^{K_r} \breve{\mathbf{K}}_{n,p} \mathbf{g} \mathbf{g}^H \breve{\mathbf{K}}_{n,p}^H$$

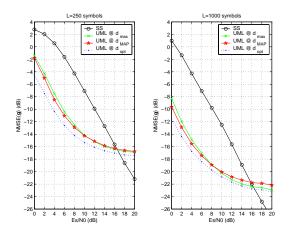
Ph.D. Coherent and Non-Coherent UWB Communications

・ロト ・回ト ・ヨト ・ヨト

 Efficient formulation by using the projection coordinates onto the signal subspace rather than the waveform samples themselves,

$$\mathbf{g} = \mathbf{U}_{\mathrm{s}} \boldsymbol{\alpha} \ \ \Rightarrow \ \ \frac{\mathsf{length}\left\{\boldsymbol{\alpha}\right\}}{\mathsf{length}\left\{\mathbf{g}\right\}} < 1 \ \ \Rightarrow \ \ \mathsf{SNR} \ \mathsf{gain}$$

► The log-Likelihood can indeed be formulated as a least-squares problem by using the vec(·) operator,


$$\max_{\boldsymbol{\alpha}_{v}} L'(\mathbf{r}|\mathbf{g}) = \max_{\boldsymbol{\alpha}_{v}} \left\{ \underbrace{\boldsymbol{\alpha}_{v}^{H} \mathbf{Q}^{H} \mathring{\mathbf{r}}_{v}}_{\mathsf{CM}} + \underbrace{\frac{1}{2} \boldsymbol{\alpha}_{v}^{H} \mathbf{Q}^{H} \mathbf{Q} \boldsymbol{\alpha}_{v}}_{2\mathsf{nd} \mathsf{OC}} \right\} = \min_{\boldsymbol{\alpha}_{v}} \left\| \mathring{\mathbf{r}}_{v} - \mathbf{Q} \boldsymbol{\alpha}_{v} \right\|^{2}$$

イロト イポト イヨト イヨト

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation ○○○○●○	Conclusions

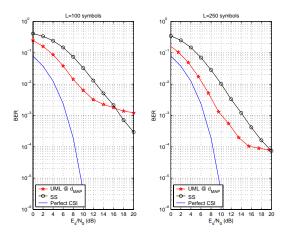
Simulation Results

MSE Performance

Simulation parameters:

- 16-QAM modulation
- Complex-valued Gaussian waveform with $N_q = 8$
- Oversampling $N_{ss} = 2$

Conclusions:


- Significant gain in low-SNR regime
- Same slope as $SS \Rightarrow$ optimal performance in low-SNR regime
- Floor effect at high-SNR

< ∃⇒

Introduction	Performance Limits	Detection 00000000	Synchronization	Waveform Estimation ○○○○○●	Conclusions

Simulation Results

BER Performance

Simulation parameters:

- 16-QAM modulation
- Complex-valued random waveform with $N_g = 8$
- Oversampling $N_{ss} = 2$

Conclusions:

- No significant degradation is observed due to ill-conditioning
- BER can be reduced up to one order of magnitude

< ≣

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions
00000					

CONCLUSIONS

Ph.D. Coherent and Non-Coherent UWB Communications

3

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions ●○○
Conclus	ions				

- Performance limits for coherent and non-coherent receivers
 - Closed-form approximations of capacity are derived
 - Tradeoff between using coherent or non-coherent receivers
- Non-coherent detection of UWB signals
 - Optimal schemes are proposed for rapid time-varying channels
 - Low-complexity implementations are proposed via rank-reduction
- Non-coherent timing synchronization
 - Optimal acquisition techniques are proposed based on low-SNR UML
 - Proposed techniques outperform existing frame-timing synchronizers
- Waveform estimation for coherent receivers
 - Optimal operation under the low-SNR regime is possible
 - The link with correlation matching techniques is established

・回 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions ○●○
Future	Work				

Capacity analysis for UWB signals

- Link between waveform distributions and capacity maximization
- Further insights into the capacity convergence rate of coherent and non-coherent receivers

Challenges in specific applications

- Cognitive radio
- Self-synchronized ad-hoc networking
- High-sensibility positioning techniques

00000 00000000 000000 000000 000000 0000	Introduction	Performance Limits	Detection	Synchronization	Waveform Estimation	Conclusions
	00000	0000000000	00000000	000000	000000	000

Thank you for your attention!

Ph.D. Coherent and Non-Coherent UWB Communications

3