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Abstract— Positioning methods that rely solely on global satel-
lite navigation system (GNSS) measurements have significantly
decreased reliability in urban environments and cannot meet the
needs of industries, such as autonomous driving. This article
introduces a novel fifth-generation (5G) joint time of arrival
(TOA) and unit vector observation model that takes rotation
into account, and evaluates its performance through multiple
sets of simulated data. The results show that compared with the
traditional joint TOA and angle of arrival (AOA) observation
model, the proposed model can notably improve the positioning
accuracy, and the effect is better after iteration. Furthermore,
we conduct a new stochastic model for 5G measurements and
investigate the impact of model coefficients on performance.
The results reveal that inappropriate coefficients will lead to
loss of observational information, highlighting the importance
of stochastic models. In urban environments, the proposed 5G
joint observation model can effectively assist GNSS and pro-
vide more accurate navigation services and rotation estimation,
providing valuable insights for the future development of smart
transportation.

Index Terms— Fifth-generation (5G) joint model, global satel-
lite navigation system (GNSS), rotation, time of arrival (TOA),
unit vector.

I. INTRODUCTION

AGLOBAL satellite navigation system (GNSS) is the
main technology used in ground navigation systems,

and the real-time positioning accuracy can reach centimeter
level [1]. However, owing to the poor anti-interference of
GNSS signals, it only denotes good performance in open
environments [2], [3], [4]. As the autonomy of smart devices
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increases, the requirements on the reliability and availability
of their navigation systems become more stringent [5].
Therefore, researchers are exploring other signals and sensors
to improve the integrity of GNSS and overcome its severe
signal attenuation in urban areas.

At this stage, technologies, such as Wi-Fi [6], Bluetooth,
and [7] ultra-wideband (UWB) [8], have been extensively
researched in assisting GNSS positioning. However, the addi-
tional construction and technical maintenance costs hinder the
further promotion and application of the above positioning
technology. In contrast, technologies, such as inertial navi-
gation system (INS) [9], [10] and pedestrian dead reckoning
(PDR) [11], suffer from error accumulation and cannot achieve
long-term positioning. The fifth-generation (5G) communica-
tion system is known for its larger bandwidth and higher
frequencies in communication [12], [13], [14], and it uses the
existing communication base stations (BSs) without requiring
additional equipment, which can significantly reduce costs. Its
potential in high-precision positioning has attracted continued
attention from researchers.

Currently, there are two types of observation information
that 5G signals can provide: one is the distance information
obtained through the signal propagation time: time of arrival
(TOA), time difference of arrival (TDOA), and round-trip time
(RTT); the other is the angle information: angle of arrival
(AOA) and angle of departure (AOD). In the urban envi-
ronment, the positioning method that combines 5G TOA and
GNSS helps to achieve the full position availability [15], [16].
The 5G TDOA observation can eliminate clock errors between
BSs and assist GNSS in achieving accurate positioning [17].
With the continuous development of technologies, such as
autonomous driving, 5G distance observation alone cannot
meet the needs of the public. The unit vector model based
on AOD signal can effectively assist GNSS positioning in
urban environments [18]; compared with relying solely on
TOA-assisted GNSS, the positioning accuracy is improved
by more than 40%. The AOD-based 5G positioning focuses
on tracking signals from the server, while the AOA-based
positioning model obtains observation information from the
user, which is more conducive to improving system security.

Considering that in practical applications, user equipment
(UE) is constantly moving, and the arrival direction of the
AOA signal is constantly changing. Therefore, the posture of
the equipment, especially the rotation within the plane, is par-
ticularly important for 5G positioning based on AOA [19].
In 5G network systems, AOA positioning can achieve sub-
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meter positioning accuracy [20], and using AOA to assist
GNSS positioning can effectively improve the reliability of
navigation solutions in urban environments [21]. However, the
rotation of equipment is not taken into account in these studies.
In [22], researchers assumed that the rotation is known, and
combining TDOA and AOA can improve positioning accu-
racy and detect NLOS interference signals. In addition, the
stochastic model is also an important factor affecting system
performance. Most of the existing studies on hybrid GNSS +

5G systems focus on positioning algorithms and do not analyze
the stochastic model. The equal-weighted model [23] and
distance-based stochastic model [24] are commonly used to
determine the weight of 5G observations. However, in most
cases, the equal-weighted model is too simple to accurately
reflect the data quality, and the distance-based model ignores
the impact of elevation on 5G angle observations.

Based on the above analysis, this study obtains observations
from the user side and proposes a 5G joint TOA and unit vector
positioning model, which takes user rotation into account, and
introduces a new stochastic model to determine the weight of
5G observations. The structure of this article is as follows.
Section II introduces the proposed model and localization
algorithm. Section III evaluates the hybrid GNSS + 5G model
performance experimentally. Finally, the conclusions are given
in Section IV.

II. METHODOLOGY

We consider that a 5G system has at least four BSs. The
location relationship between the BS and UE is shown in
Fig. 1. Locations of the BS and UE are denoted by pBS,i =

[xi , yi , zi ]
T and pUE = [x, y, z]T with β denoting the rotation

of the UE coordinate system.
The user’s altitude change is not obvious in daily life, and

only plane coordinates are estimated in subsequent exper-
iments. The coordinates of BSs and z are assumed to be
known, while the values of (x, y), β, and 5G clock bias τ

are unknown.

A. 5G Joint TOA + AOA Observation Model

Traditionally, the angle measurements provided by the 5G
system are in the local coordinate system, while the coor-
dinates of the BS and the UE are in the global coordinate
frame, so a rotation matrix is required for conversion. The
observation model joint 5G TOA and AOA can be expressed
by the following formula [20], [25]:

ZTA =



d5G,i = ||pBS,i − pUE|| + c · τ

θi = arccos

([
RT(pBS,i − pUE

)]
z

||pBS,i − pUE||

)

αi = arctan

([
RT(pBS,i − pUE

)]
y[

RT
(
pBS,i − pUE

)]
x

) (1)

where ||·|| is the geometric distance. c is the light propagation
speed

R =

cos β − sin β 0
sin β cos β 0

0 0 1


denotes the rotation matrix. arccos and arctan are the inverse
cosine and inverse tangent.

Fig. 1. Schematic of the location relationship between BS and UE. θ and α,
respectively, represent the elevation and azimuth in local coordinate system, β

is the rotation between the two systems, and d denotes the distance between
BS and UE. The subscript i represents the BS identification number.

B. 5G Joint TOA + Unit Vector Observation Model

For 5G systems, nonlinear errors are a key factor affecting
their performance. To solve this problem, we propose a unit
vector observation model based on AOD measurements in [18]
and verify its feasibility and performance. The unit vector
model can also be extended to AOA observations, and the
joint TOA and unit vector model is as follows:

ZTU =



d5G,i = ||pBS,i − pUE|| + c · τ

sin θi cos αi =
[RT(pBS,i − pUE)]x

||pBS,i − pUE||

sin θi sin αi =
[RT(pBS,i − pUE)]y

||pBS,i − pUE||

cos θi =
[RT(pBS,i − pUE)]z

||pBS,i − pUE||
.

(2)

It is not difficult to find that compared with traditional AOA
observations, the unit vector observation model is less affected
by nonlinearization errors and theoretically has better position-
ing performance.

C. Stochastic Model of the 5G Joint Model

Moreover, the quality of measurement data at different
locations varies. The existing research on hybrid GNSS +

5G positioning has not discussed the stochastic model of
5G observations. According to the 5G signal propagation
model [26], we propose the following stochastic model:

σ 2
d5G,i

=

(
d5G,i

b

)2

σ 2
θi

= a ·

(
d5G,i

b

)2

·

(
1

cos2 θi

)
σ 2

αi
= a ·

(
d5G,i

b

)2

·

(
1

sin2 θi

)
(3)

where a and b are the constants and σ is the standard
deviation (STD). In the solution process, we consider that
distance measurements are independent of each other, and their
corresponding variance–covariance matrix is as follows:

Qd5G = diag
[
σ 2

d5G,1
, . . . , σ 2

d5G,m

]
(4)

where m is the number of BSs. According to the error
propagation law, there is a mutual relationship between each
measurement in unit vector model. We derived its variance
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and covariance matrix QU V in [18], and the stochastic model
of the 5G joint model can be expressed as follows:

Qjoint,5G =

[
(Qd5G)m∗m

(QU V )3m∗3m

]
. (5)

D. Hybrid GNSS + 5G Model

Typically, we express GNSS pseudorange measurements by
the following formula:

P s
j = ρs

j + c(dtr − dts) + I + T (6)

where ρ = ((xs, j − x)2
+ (ys, j − y)2

+ (zs, j − z)2)1/2 is the
geometric distance between the satellite and the receiver,
and the subscripts s and j represent the satellite and their
identification number, respectively. r is the receiver, and P
represents the pseudorange. dt denotes the clock error. I and
T represent the ionospheric delay error and the tropospheric
delay error. According to (2) and (6), the observation model
of the hybrid system can be represented by ZGNSS,5G =

[P s
1 , P s

2 , . . . , P s
n , ZTOA+U V ,1, . . . , ZTOA+U V ,m]

T. n and m rep-
resent the number of satellites and the number of 5G BSs.

Furthermore, we consider that distance observations from
different satellites are independent of each other, and their
variance–covariance matrix can be expressed as follows:

QPGNSS = diag
[
σ 2

P,1, . . . , σ
2
P,n

]
σ 2

P,n = k · 10−(C/N0)n/10
+ l (7)

where C/N0 is the carrier-to-noise ratio. k and l are coefficient
constants. Therefore, the variance–covariance matrix of the
hybrid GNSS + 5G system is as follows:

QGNSS,5G =

[
(QPGNSS)n∗n

(Qjoint,5G)4m∗4m

]
. (8)

The weight least squares method is used to estimate
unknown parameters, and it can be constructed as follows:

ZGNSS,5G = G(X) + V . (9)

X = [x y β τ ]
T is the state vector, G(X) is the modeled

observation, and V is the residual of the observation. Taylor’s
first-order expansion is performed at the initial value X0 to
obtain the linearized error equation

V = −H · d X + L (10)

where H is a coefficient matrix consisting of the partial
derivatives of the observation equation with respect to the
parameters. L = ZGNSS,5G − G(X0) is the difference between
the observed value and the modeled value, and d X =

[1x 1y 1β 1τ ]
T is the correction for the parameters to

be estimated. The solution for the hybrid GNSS + 5G system
can be produced by using an iterative solution approach

X = X0 + d X

d X = (HTQGNSS,5GH)−1HTQGNSS,5GL (11)

where X0 is the solution of the previous epoch and the
meanings of the remaining parameters are the same as above.

Fig. 2. Performance comparison of different joint models and CRLB of these
methods. Note: STD of TOA measurements is 3 m.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In the 5G positioning process, the accuracy achieved by
the TOA method can only meet the positioning requirements
of some scenarios, and the impact of nonlinearization errors
in the AOA method is nonnegligible. Therefore, we use the
joint 5G TOA and unit vector model to conduct subsequent
experiments and compare with other models.

A. Cramer–Rao Lower Bound of 5G Joint Model

To systematically and comprehensively verify the 5G joint
model performance, we add different biases to the angle and
distance measurements and analyze the Cramer–Rao lower
bound (CRLB) of different methods [27].

The CRLB can be used to calculate the best estimation
accuracy that can be obtained in unbiased estimation, and it
is often used to evaluate the best performance of parameter
estimation methods. To better simulate the urban observa-
tion environment, we fix the STD of TOA measurements to
3 m [24]. Fig. 2 shows the CRLB of different methods (solid
lines) and the positioning root-mean-square error (RMSE)
of two 5G joint models (dotted line) under different angle
observation accuracies. It can be clearly seen that the 5G joint
model has better CRLB than the single model, which also
shows that more measurements can improve model perfor-
mance to a certain extent. Comparing the positioning results,
it can be found that the 5G joint TOA and unit vector model
has a better performance and can provide accurate solutions.
However, excessive angle measurement errors greatly reduce
data availability, which results in the 5G joint model accuracy
and CRLB being infinitely close to the CRLB of the TOA.

Likewise, we fix the STD for AOA measurement to 2◦ and
display the results in Fig. 3. Analyze the relationship between
the different positioning methods and the accuracy of distance
measurement. We can draw the conclusion consistent with
Fig. 2 that the 5G joint TOA and unit vector model performs
better than the joint TOA and AOA model.

B. Simulation of 5G Joint Model

Section III-A analyzes the performance of different 5G
positioning algorithms and theoretically verifies the superiority
of 5G joint TOA and unit vector. Next, we quantitatively
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Fig. 3. Performance comparison of different joint models and CRLB of these
methods. Note: STD of AOA measurements is 2◦.

TABLE I
COORDINATES OF BASE STATIONS (m)

Fig. 4. Impact of coefficient selection and iteration on performance. The
position of UE is (30, 40, 0).

verify the feasibility of the 5G joint model by simulating
measurements, and the specific distribution of BSs is shown in
Table I. To simulate measurements in urban environment, the
STD of the 5G simulated distance and angle measurements
are 3 m and 2◦ in the following experiments.

Appropriate stochastic models can exploit the full potential
of measurements. In (3), we introduce the stochastic model
used in this research. Typically, the distance between the UE
and the nearest BS is set to b. After extensive simulation
analysis, the value of a was selected as 0.05 (Case 1), and the
value of a was enlarged 1000× (Case 2) to study the impact
of the coefficient on the stochastic model. Meanwhile, we also
analyze the impact of iterations on localization performance.
The experimental results are shown in Fig. 4.

It can be found from Fig. 4 that the positioning results of
the 5G joint model are more reliable when a is set to 0.05.

Fig. 5. Impact of coefficient selection and iteration on rotation estimation.
The position of UE is (30, 40, 0).

Fig. 6. Performance comparison of two stochastic models.

This demonstrates that an excessively large coefficient will
affect the utilization of observations. Also, the performance
of the 5G joint TOA and unit vector model is better than
that of the 5G joint TOA and AOA model under different
coefficient settings, which reflects the superiority of the unit
vector model. We also find that when Case 1 is used, the
positioning results after iteration are closer to the CRLB.
Moreover, we compared the impact of different iteration
numbers on localization. The results prove that iteration can
effectively improve the positioning accuracy, and when the
number of iterations reaches 10, it is close to the best accuracy
of the model. Therefore, we set a to 0.05 and the number of
iterations to 10 in subsequent experiments.

Fig. 5 illustrates the rotation accuracy of the two models
under different policies. Similarly, both joint models show
more reliable rotation calculation performance in Case 1. The
rotation accuracy can reach 1.95◦ when more than ten times,
while the optimal rotation accuracy is only 4.67◦ in Case 2.

To verify the correctness of the proposed stochastic model,
we conduct a comparative experiment with the distance-based
model, and the comparison results are shown in Fig. 6.
It shows the plane positioning accuracy and the rotation
estimation accuracy under the two stochastic models. The
results demonstrate that the positioning errors in the north and
east directions are 0.784 and 0.691 m after using the proposed
stochastic model. Compared with the distance-based model,
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Fig. 7. Positioning results of two joint 5G models at different reference locations (left panel: positioning results of joint model and right panel: convergence
probability of two joint models at different locations). (a) Point C. (b) Point B. (c) Point A.

the accuracy is improved by 12.2% and 10.9%, respectively.
Similarly, the rotation estimation error also dropped from 2.42◦

to 1.99◦.
As shown in Fig. 7, we also conduct experiments at dif-

ferent UE reference points to comprehensively compare the
performance of the two models. The intersection of the red
dotted lines represents the UE reference location A(3, 4, 0),
B(50, 50, 0), and C(99, 99, 0), and the intersection of the black
dotted lines represents the BS location D(100, 100, 32.543).
Fig. 7 (left) manifests the positioning effects of the two joint
models at different locations. Both joint models can maintain
positioning accuracy within 1 m when the user is close to the
central area, and the positioning results of the combined TOA
and unit vector have a smaller error distribution range, while
there is a significant gap in the performance of the two joint
models, when the user is close to the BS. Fig. 7 (right) clearly
displays that near the BS, the reliability of joint TOA and AOA
model drops significantly. It is mainly due to the increase in
the error range of the azimuth, while the joint TOA and unit
vector model is less affected by azimuth errors and can still
provide accurate solution. Furthermore, we show the location
results between the BS and the center point for verification.
The results also prove that the TOA and unit vector joint model
has a better performance.

We notice from the results in Fig. 7 that the performance
difference between the two joint models is obvious when UE
is close to the BS. The positioning accuracy of the TOA and
unit vector joint model has reached 3 m, while the maximum
positioning error of TOA and AOA joint model reaches
more than 6 m. We statistically calculate the convergence
probabilities of the two model solutions when close to the

Fig. 8. Convergence probability heat map of the joint TOA and AOA model
when the UE is located near the BS.

BS. Among them, the convergence conditions are as follows:
1) the difference between the results of two adjacent iterations
is less than 0.001 m and 2) the difference between the last
iteration result and the reference coordinate is less than twice
CRLB (5 m). The convergence results are shown in Fig. 8.

The results demonstrate that the joint TOA and unit vector
model can still achieve convergence in all epochs, and only the
convergence heat map of joint TOA and AOA model is shown
in Fig. 8. The red dot indicates the location of the 5G BSs.
Unlike all convergence in the central area, the convergence
probability of the TOA and AOA model drops below 40%
when the UE is close to the BS. In addition, we find that
the convergence probabilities are different near different BSs,
which is caused by the height of the BS affecting the geometric
distribution [16].
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Fig. 9. Schematic of the hybrid GNSS + 5G positioning system.

Fig. 10. Schematic of the data collection point and its surrounding
environment.

C. Hybrid GNSS + 5G Positioning Experiment

The GNSS measurements were collected by HUAWEI P40
smartphone at the Southeast University Jiulonghu Campus
on Day 235 of 2023. HUAWEI P40 is equipped with the
Kirin990 5G chipset, which supports receiving GPS (L1/L5),
GALILEO (E1/E5a), BDS (B1), and GLONASS (G1) mul-
tisystem measurements.

The schematic of the hybrid GNSS + 5G positioning system
is shown in Fig. 9, x–y–z represents the global coordinate
system, and x ′–y′–z represents the local coordinate system
of the device. This study only considers the rotation β of
two coordinate systems on the plane. As shown in Fig. 10,
there are tall buildings blocking at the GNSS data collection
point, and relying solely on GNSS cannot provide a high-
precision solution, and we integrate 5G measurements to
improve positioning performance.

We integrate two 5G joint observation models with GNSS
measurements, and the experimental results are manifested in
Fig. 11. The blue square represents the positioning result of the

Fig. 11. Point error and rotation results of the hybrid GNSS + 5G model.
Left: plane error distribution. Right: rotation accuracy.

Fig. 12. Hybrid positioning performance of different 5G measurement models
with GNSS measurements.

hybrid GNSS + 5G joint TOA and AOA model, and the orange
cross represents the positioning result of the hybrid GNSS +

5G joint TOA and unit vector model. It can be concluded
from Fig. 11 that the error distribution of joint TOA and unit
vector is more concentrated, and the positioning accuracy of
fusion with GNSS is 1.516 m. The positioning accuracy is
improved by 24.83% compared with the hybrid GNSS + 5G
joint TOA and AOA model. Meanwhile, we also added 95%
confidence ellipses (GNSS + 5G joint TOA and AOA is in
green, and the GNSS + 5G joint unit vector is in red) to further
display the improvement of GNSS performance between the
two methods. It is not difficult to find that the hybrid model
using unit vector has better stability and reliability. Also, the
estimation of rotation is also more accurate after using unit
vector measurements, which can be concluded in Fig. 11
(right). The rotation RMSE dropped from 1.46◦ to 1.03◦, and
the accuracy increased by nearly 30%.

Furthermore, we use another GNSS dataset collected on Day
270 of 2023 to analyze the hybrid positioning performance of
the 5G joint TOA and unit vector model and other common 5G
measurement model with GNSS measurements. Fig. 12 shows
the positioning RMSE of hybrid models on the plane, and
the numerical results are shown in Table II. The positioning
accuracy using only GNSS measurements is 2.853 m, while
the introduction of 5G measurement can indeed improve the
positioning effect. The 5G AOA measurements improve GNSS
positioning accuracy better than 5G TOA measurements, and
unit vector has a more obvious hybrid positioning effect than
TOA and AOA methods due to its low degree of nonlinearity.
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TABLE II
HYBRID POSITIONING RESULTS OF DIFFERENT 5G MEASUREMENT

MODELS WITH GNSS MEASUREMENTS (m)

The 5G joint TOA and unit vector model gives full play to
the advantages of 5G measurements, and the point accuracy
reaches 1.319 m.

IV. CONCLUSION

In this study, we propose a novel 5G joint TOA and unit
vector model under the premise of considering rotation and
analyze its performance theoretically. A hybrid GNSS + 5G
positioning algorithm is developed based on the proposed
model, and its feasibility is proved through experiments. Our
approach involves several key components, summarized as
follows.

1) We analyze the potential of 5G measurements in hybrid
positioning systems and conduct an in-depth study of 5G
models taking rotation into account. The proposed 5G
joint model effectively decreases the degree of system
nonlinearity and is compared with TOA, AOA, and
their hybrid models through simulation experiments. The
results show that the proposed joint TOA and unit vector
model shows stronger stability and effectively improves
the positioning accuracy of the 5G system.

2) Typically, iteration improves positioning accuracy.
We verify the impact of the number of iterations on the
system through simulation experiments and find that the
coefficients of the stochastic model have a significant
impact. In addition, the unit vector joint model can
provide high-reliability positioning when the user is
close to the BSs, while the accuracy and convergence
probability of the AOA joint method will significantly
decrease.

3) We combine the proposed 5G unit vector joint model
with GNSS measurements to verify its effect in urban
environments and compare it with other traditional meth-
ods. The results manifest that the hybrid GNSS +

5G joint TOA and unit vector model can still supply
accurate navigation services and rotation estimation even
in occlusion environments. Our proposed model has
significant implications for the development of smart
transportation.

In summary, our study demonstrates the great potential of
5G joint model in improving GNSS positioning accuracy and
reliability. It can be used in fields, such as autonomous driving
and smart transportation. Our next research focus is to combine
5G with other sensors to develop hybrid positioning algorithms
suitable for dynamic environments. These studies will further
enhance the practicality and effectiveness of the proposed
model.
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