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Abstract—The paper addresses the transient change detection
(TCD) problem, assuming that the duration of change is finite.
The TCD criterion minimizes the worst-case probability of missed
detection among all tests with a prescribed worst-case probability
of false alarm. We study the fixed sample size (FSS) test as a solution
to the TCD problem. First, the operating characteristics of the FSS
test have been established for arbitrary pre- and post-change dis-
tributions. Next, a numerical method of the sample (block) size op-
timization has been considered for three particular log-likelihood
ratio distributions, i.e., Gaussian, χ2 and exponential. Moreover,
simple asymptotic equations for the optimal operating character-
istics and block size have been proposed in the Gaussian case.
Numerical results are provided to confirm the theoretical findings
for the above-mentioned distributions. The accuracy and sharpness
of the asymptotic analytical equation is analyzed in the Gaussian
case. Finally, the FSS test is compared to the finite moving average
(FMA) test obtained by optimizing the CUSUM-type test with
respect to the TCD optimality criterion for the above-mentioned
distributions. The application of the FSS and FMA tests to the
radio-navigation integrity monitoring is also considered.

Index Terms—Transient change detection, Neyman-Pearson
test, fixed sample size test, finite moving average, hypothesis testing.

I. INTRODUCTION

THE field of detection theory has usually been linked to the
classical problem of hypothesis testing, which has been

treated in so many textbooks since its inception [1], [2], and its
has been applied to a wide range of applications [3]–[5]. On the
other side, the problem of abrupt change detection in random
signals has many important novel applications such as fault
detection, on-line monitoring of safety-critical infrastructures,
and segmentation of signals, just to mention a few [6]–[8]. This
kind of detection lies outside the field of classical hypothesis
testing and it uses the background of the sequential change
detection (SCD), including quickest change detection (QCD)
and more recently transient change detection (TCD).
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In the QCD problem the post-change period is infinitely long.
Let {yn}n≥1 be a sequence of independent random variables
and let ν be the index of the first post-change observation:

yn ∼
{
F0 if n < ν,
F1 if n ≥ ν,

(1)

where F0 is the pre-change cumulative distribution function
(CDF) and F1 is the post-change CDF. Let Pν be the joint
distribution of the observations y1, y2, . . . , yν , yν+1, · · · when
ν <∞. Let P∞ denote the same when ν = ∞, i.e. there is no
change and all the observations y1, y2, . . . are i.i.d. with CDF
F0. Let Eν (resp. E∞) and P ν (resp. P∞) be the expectation and
probability with respect to (w.r.t.) the distributionPν (resp.P∞).
Lorden [9] proposed an optimality criterion which involves the
minimization of the worst-worst-case mean detection delay:

E(T ) = sup
ν≥1

esssupE
ν
[
(T − ν + 1)+ |y1, . . . , yν−1

]
(2)

among all stopping times T belonging to the class Cη = {T :
E
∞(T ) ≥ η}, where (x)+ = max(0, x) and η > 0 is a pre-

scribed value of the average run length to a false alarm. He
proved that the cumulative sum (CUSUM) test, previously in-
troduced by Page [10], is asymptotically optimal w.r.t. criterion
(2) when η → ∞. A non asymptotic optimality of the CUSUM
test has been established by Moustakides [11].

In contrast to the QCD, the TCD problem is motivated by some
applications when the observed phenomena (say, an underwater
acoustic signal [12], a navigation system fault [13] or a cyber-
physical attack on the supervisory control and data acquisition
(SCADA) system [14]) is of short and maybe unknown (and
random) duration L:

yn ∼
{
F0 if 1 ≤ n < ν or n > ν + L− 1
F1 if ν ≤ n ≤ ν + L− 1 . (3)

There are two main scenarios of TCD. The first scenario cor-
responds to the situation when the observed phenomena is of
unknown and random duration L. The case of geometrically
distributed L ∼ Geom(ψ) with a known parameter ψ and an
optimal solution to the TCD problem in this case are considered
in [15].

The second scenario arises when the observed phenomena
(fault, attack or intrusion) leads to a serious degradation of the
system security when the transient change is detected with the
delay greater than a required time-to-alert L, i.e. T − ν + 1 >
L. For this reason the transient changes detected with the delay
greater than L are assumed to be missed. Typical examples of
safety and security critical systems include but are not limited
to: navigation systems integrity monitoring [13], [16], [17],
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detection of cyber-physical attacks on SCADA systems [14],
drinking water monitoring [18] or sodium-cooled fast reactors
monitoring [19] and its heat exchanger leak detection [20]. A
detailed numerical example of the GNSS integrity monitoring
is discussed in Section VII-A.

The TCD problem has been considered in [12]–[15], [18],
[21]–[28]. In particular, it was shown that the Shewhart test
minimizes the probability of missed detection among all stop-
ping times T belonging to the class Cη for the special case
L = 1 in [24], [25]. A solution minimizing the probability of
missed detection in a restricted class of truncated sequential
probability ratio tests provided that the probability of false alarm
is upper bounded have been established in [18], [26]. It was
shown that the window-limited CUSUM test with an optimal
variable threshold is reduced to the finite moving average (FMA)
test. However, the issue of optimality or asymptotic optimality
for the second scenario is still open.

If the pre- and post-change distributionsF0 andF1 are known,
the non-sequential or fixed sample size (FSS) statistical test is
based on the repeated Neyman-Pearson (N-P) test. The conven-
tional N-P test minimizes the probability of missed detection
(PMD) provided that the probability of false alarm (PFA) is
upper bounded [2] for a sample of a given size. In contrast to the
sequential tests, the FSS test decides in favor of one of two alter-
native hypotheses by using a sample (block) of an optimal size.
Hence, the FSS (repeated N-P test) necessitates the optimization
of the block size. The FSS strategy is usually suboptimal w.r.t. the
QCD criterion but it has some practical advantages. For instance,
the FSS strategy is more simple, flexible and easily adaptable
to the large-scale systems with time-variable structures than the
sequential strategy. Typical examples of large-scale systems with
time-variable structures are satellite navigation in (sub-) urban
environment and network tomography for anomaly detection
(see some details and references in [29]).

The global navigation satellite systems (GNSS) are exten-
sively used in rail transport and in-car positioning and navi-
gation in (sub-) urban environment. For some safety/security
critical services, the GNSS autonomous integrity monitoring
(fault detection and exclusion) is an important function. In
contrast to the civil aviation application, some lines-of-sight to
satellites are blocked by buildings, other urban constructions,
trees, and interference. Hence, some channels disappear and
reappear (after re-acquisition) in an unpredictable way. For
the fault detection problem, this means that the dimensions
of observations, nuisance and informative parameters, and the
distribution of noise are time-variable in pre- and post-change
modes. There are no results regarding the sequential approach
applicable to such a situation in the literature. The FSS test is
a suboptimal but practicable solution easily (re-) adjustable in
each data block for such a system with a time-variable structure.

Furthermore, the FSS-type tests represent an alternative to the
sequential tests when the sensors and computers are connected
by a network or the data streams are necessarily preprocessed by
blocks. In fact, the raw data is usually transmitted via network
by blocks, because it is difficult to send each new observation
one-by-one as required by the sequential approach. A similar
example is the data preprocessing of subsequent signal blocks

by the discrete Fourier transform (especially in the case of high
sampling rate) in the spectral analysis. This makes the FSS-type
tests interesting alternative to the sequential tests for these batch-
type applications. Such a perspective also justifies the study of
the FSS test, especially its block size optimization.

The history of comparisons between sequential and non-
sequential, i.e., FSS strategies, in the theory of statistical hy-
potheses testing and signal detection is quite long, some results
and references can be found in [6], [8], [30], [31]. The first
comparison between optimal sequential and FSS strategies in
QCD was performed by A.N. Shiryaev in [32]–[34] for the
Bayesian approach and under assumption of a long stationary
pre-change regime (when ν → ∞). Next, a method for selecting
the asymptotically optimum sample size of the FSS test in the
QCD problem has been considered in [35] by using the criterion,
which is slightly different from (2). The comparison between op-
timal sequential and FSS strategies in QCD for the non-Bayesian
approach by using Lorden’s worst-worst-case criterion (2) has
been considered in [36] and its generalization to the case of
composite hypothesis and to the case of multiple hypotheses
after change have been considered in [37] and [29], [36], [38],
respectively. It was shown that the optimal minimax sequential
change detection/isolation test is asymptotically twice as good
as its FSS competitor.

There are no results in the literature on the comparison be-
tween the sequential and FSS strategies in the TCD problem.
The current paper represents the first attempt in this direction.

The rest of the paper is organized as follows. In Section II
we state the TCD problem which is treated in the paper, i.e., the
optimality criterion and the original contributions. The proposed
FSS test is defined in Section III. Its competitor, i.e., the FMA
test is also briefly presented here. The operating characteristics
of the FSS test are studied in Section IV for an arbitrary distri-
bution. We consider three particular distributions in Section V.
Subsection V-A is devoted to the Gaussian mean case. First,
we propose upper bounds for the operating characteristics of
the FSS test. Second, we consider the block size optimization.
Two non-Gaussian log-likelihood ratio (LLR) settings, i.e., the
detection of transient changes in the Gaussian variance and in the
rate of the exponential distribution are considered in Subsection
V-B and V-C. The accuracy and sharpness of the asymptotic
solution of Gaussian mean case is examined in Section VI by
its comparison to the numerical block size optimization. The
numerical optimization for two non-Gaussian settings is also
considered here. Section VII is dedicated to the comparison of
the FSS test against the FMA test for three different LLR dis-
tributions (Gaussian, χ2 and exponential) and to the application
of these tests to the radio-navigation integrity monitoring. The
discussion of the obtained results is given in Section VIII and
Section IX concludes the paper.

II. PROBLEM STATEMENT AND CONTRIBUTIONS

Let {yn}n≥1 be a sequence of independent random variables
defined by the generative model of transient changes (3). The
goal of the current paper is to study the operating characteristics
of the FSS test by using the TCD optimality criterion proposed
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in [18], [26]:

inf
T∈Cα

{
Pmd(T ) def= sup

ν≥1
P ν(T − ν + 1 > L|T ≥ ν)

}
(4)

among all stopping times T ∈ Cα satisfying

Cα =
{
T : Pfa(T ) def= sup

�≥1
P∞(� ≤ T < �+mα) ≤ α

}
, (5)

where mα is a given reference period. Next, we optimize the
operating characteristics of the FSS test by choosing the optimal
block size and, finally, we compare the FSS test against the FMA
test.

The original contributions of this work are the following.
� Expressions for the worst-case PMD Pmd(TFSS) (4) and

PFA Pfa(TFSS) (5) of the FSS test are established for
arbitrary pre-change and post-change distributions.

� The optimization of the FSS test w.r.t the TCD criterion
(4) – (5) is performed in the Gaussian mean case. An
asymptotically optimal block size isN ∗ = 	L/2
. It mini-
mizes an upper bound for the worst-case PMD Pmd(TFSS)
provided that the worst-case PFA Pfa(TFSS) in a given
period mα is upper bounded. The numerical optimization
confirms the sharpness of the asymptotic upper bound for
the worst-case PMD Pmd(TFSS) for small values of the
worst-case PFA Pfa(TFSS), typical in applications.

� The numerical optimization of the FSS test w.r.t the TCD
criterion (4)–(5) is performed for two non-Gaussian LLR
settings, i.e., the transient change detection in the variance
of Gaussian distribution and in the rate of the exponential
distribution.

� The comparison between the optimized FSS and FMA
tests is performed for three different LLR distributions
(Gaussian, χ2 and exponential). This comparison is inter-
esting because no optimal solution for the TCD problem
is available, so it is worth considering the FSS as a pos-
sible candidate. The window-limited CUSUM test is also
considered in the Gaussian mean case.

� Finally, the FSS and FMA tests are applied to the radio-
navigation integrity monitoring and their statistical char-
acteristics are compared in this case.

III. TRANSIENT CHANGE DETECTION: FSS AND FMA TESTS

The goal of this section is to define the competitors, i.e. FSS
and FMA tests for TCD.

A. FSS Test

The general FSS strategy can be described as follows: sample
blocks with a fixed size N are collected, and at the end of each
sample block a decision between H0 = {yn ∼ F0} and H1 =
{yn ∼ F1} is taken. We stop sampling as soon as a decision is
made in favour of H1. The solution to the optimal hypothesis
testing problem is given by the fundamental Neyman-Pearson
lemma [2], and then the stopping time of the FSS (or repeated
N-P test) is given by

TFSS(N,h) def=N · inf {κ ≥ 1 : δκ(h) = 1} (6)

with δκ(h) the decision at the κ-th block of N observations of
the N-P test, defined as

δκ(h) def=

{
1 if Sκ ≥ h

0 if Sκ < h
, (7)

where h is a chosen threshold and Sκ is the LLR corresponding
to the κ-th block of N observations

Sκ =
κN∑

i=(κ−1)N+1

λi, λi = log
f1(yi)
f0(yi)

, (8)

where fj is the probability density function (PDF) of the CDF
Fj , j = 0, 1 and λi is the LLR of observation yi.

Remark 1: To simplify the notations, we consider the case of
absolutely continuous distributions F0 and F1 (with densities).
In the case of discrete or continuous-discrete distributions, a
randomization on the boundaryh is necessary (see details in [2]).

B. FMA Test

Initially, the window-limited CUSUM with a constant thresh-
old has been considered by Lai in [39] and shown to be asymp-
totically optimal in the QCD problem for minimizing average
detection delay for i.i.d. and non-i.i.d stochastic models. Next,
in papers [18], [26], a window-limited CUSUM with a variable
threshold

TWL = inf

{
n ≥ L : max

1≤k≤L

[
n∑

i=n−k+1

λi − a(k)

]
≥ 0

}
,

(9)
where a(k) is a variable threshold, has been proposed as a
solution to the TCD problem. It was shown in [18], [26] that the
optimization of the variable threshold a(k) w.r.t. the criterion
(4)–(5) reduces the window-limited CUSUM test T (9) to the
FMA test given by the stopping time

TFMA(a) = inf

{
n ≥ L :

n∑
i=n−L+1

λi ≥ a

}
. (10)

In conclusion, as it follows from [26], the FMA test is the best
sequential competitor (benchmark for the TCD) of the FSS test
for today’s level of knowledge w.r.t. the criterion (4)–(5). In
particular, the FMA test outperforms the conventional CUSUM
(see [26]), window-limited CUSUM (see Section VII) and modi-
fied CUSUM tests (see [15]). As it follows from (6)–(8) and (10),
the FSS and FMA tests are equivalent, i.e. TFSS = TFMA when
N = L = 1 and a = h.

IV. PERFORMANCE OF FSS TEST FOR

AN ARBITRARY DISTRIBUTION

The goal of this section is to examine the statistical properties
of the FSS test w.r.t. the criterion (4)–(5). First, we provide the
error probabilities of the N-P test w.r.t the TCD criterion. Next,
the optimization of the FSS test is examined.

Let us consider a sample of size N , y1, . . . , yN ∼ Fj , j =
0, 1. Let Gj = Gj(N,h) = Pj(S ≤ h) be the CDF of the LLR
S =

∑N
k=1 λk, when y1, . . . , yN ∼ Fj , j = 0, 1. It follows from
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(7)–(8), that the error probabilities are given by:

α0(N,h) def= P0(S ≥ h) = 1 −G0(N,h),

α1(N,h) def= P1(S < h) = G1(N,h), (11)

where Pj(. . .) stands for the probability of an event when the
hypothesis Hj = {y1, . . . , yN ∼ Fj} is true, j = 0, 1.

A. Worst-Case PFA and PMD

Let us consider the FSS stopping time defined in (6), where
δκ(h) is the decision of the N-P test at the κ-th block of N
observations. Thereby, the performance of the FSS stopping time
in terms of the TCD criterion is given by the two following
theorems for the worst-case probabilities of missed detection
(4) and false alarm (5), respectively.

Theorem 1 (Worst-case PFA of the FSS test): Let TFSS be the
FSS stopping time (6) with the decision function δκ(h) (7)–(8),
where the block size is N ≥ 1 and the detection threshold is h.
The worst-case PFA in a given reference period mα boils down
to

Pfa(TFSS;N,h) = 1 − [G0(N,h)]	mα
N 
, (12)

where 	x
 = min{n ∈ Z|n ≥ x} stands for the ceiling func-
tion.

Proof: The proof is given in Appendix A. �
Theorem 2 (Worst-case PMD of the FSS test): Let TFSS be

the FSS stopping time (6) with the decision function δκ(h) (7) –
(8), where the block size isN ≥ 1 and the detection threshold is
h. Let L ≥ 1 be the required time-to-alert. Then, the worst-case
PMD of the FSS test, Pmd(TFSS;N,h), is given by

Pmd(TFSS;N,h) =

{
max

1≤ν≤N
A(ν,N, h) if 1 ≤ N ≤ L

1 if N > L
(13)

with

A(ν,N, h)

=

{
Pν(Sν

1 < h)[G1(N,h)]� L
N �−1 if 1 ≤ ν ≤ ν∗

P ν(Sν
1 < h)[G1(N,h)]� L

N � if ν∗ + 1 ≤ ν ≤ N
,

(14)

where �x� = max{n ∈ Z|n ≤ x} stands for the floor func-
tion, ν∗ = (� L

N � + 1)N − L and Sν
κ stands for the LLR of the

transition block of observations with ν ∈ [(κ− 1)N + 1, κN ].
The first part of the transition block, i.e. y(κ−1)N+1, . . . , yν−1

belongs to the pre-change period and the second part, i.e.
yν , . . . , yκN belongs to the post-change period and Pν(Sν

κ < h)
is the PMD of the N-P test applied to this transition block.

Proof: The proof is given in Appendix B. The classical hy-
pothesis testing is based on the assumption that all observations
are identically distributed under each hypothesis. Because this
assumption is not fulfilled for the above mentioned transition
block, the classical hypothesis testing cannot be applied here.
The main technical novelty in the proof is the calculation of
A(ν,N, h) as a function of two terms. The term G1(N,h) is
regular and can be calculated using the classical hypothesis

testing. The other term, Pν(Sν
1 < h), is irregular and the clas-

sical hypothesis testing cannot be applied to it. The transition
block PMD Pν(Sν

1 < h) and the function A(ν,N, h) are used
in Corollary 2, Theorem 3, Corollary 4 and Corollary 6 for the
calculation of the worst-case PMD Pmd(TFSS;N,h). �

Remark 2: It is worth noting that the worst-case PMD
Pmd(TFSS;N,h) of the FSS test is a periodic function of the
change-point ν (the period is equal toN ) due to the fact that the
observations are i.i.d. under the pre-change regime. Without loss
of generality and seeking simplicity, in the sequel we consider
only the first block (κ = 1) of observations {yn}1≤n≤N and the
change-point ν ∈ [1, N ] for calculation of Pν(Sν

κ < h).

B. Optimization of FSS Test

The FSS test (6)–(7) has two tuning parameters: the block
sizeN and the threshold h. Taking into account the criterion (4)
– (5), the optimal choice of N and h is reduced to the following
optimization problem:{

arginf
{N,h}

{Pmd(TFSS;N,h)} = {N ∗, h∗}
subject to Pfa(TFSS;N,h) = α

, (15)

where N ∗ and h∗ are the optimal parameters of the FSS test. In
general, this problem has to be numerically solved. The reason
is that it is not trivial to obtain a closed-form expression for the
statistical properties of the FSS test for the TCD criterion.

V. PERFORMANCE OF FSS TEST FOR THREE

PARTICULAR DISTRIBUTIONS

A. Transient Change in the Mean

The goal of this section is to examine the Gaussian mean
case of the TCD problem and to apply the general results of
Section IV to this particular case. With the previous results we
realize how difficult is to obtain a closed-form expression for
the worst-case PFA and PMD of the FSS test. Even if we know
an expression for the worst-case PMD (13)–(14), we would still
need numerical computation for the term A(ν,N, h) in (14).
In this section we limit ourselves to the Gaussian mean case
allowing us to obtain closed-form expressions for the worst-case
PFA and PMD of the FSS test. Even though some additional
upper bounding procedure for the worst-case PFA given by (13)
– (14) will be necessary to optimize the FSS test. Fortunately, the
negative impact of this upper bound is asymptotically negligible
when α→ 0+. We will show these results below.

1) The Worst-Case Probabilities in the Gaussian Mean Case:
Let us first re-write the generative TCD model (3) for the
Gaussian mean case

yn ∼
{N (0, σ2) if 1 ≤ n < ν
N (θ, σ2) if ν ≤ n ≤ ν + L− 1 , (16)

where N (μ, σ2) stands for the Gaussian law with mean μ and
variance σ2. The PDF of N (μ, σ2) is given by f(x;μ, σ2) =
(1/

√
2πσ2) exp{−(x− μ)2/2σ2}. Because a transient change

detected with the delay greater than L is assumed to be missed,
we do not consider the generative TCD model for the period
after ν + L− 1. Let us also re-write the FSS test (7) for the
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Gaussian mean case. After simple algebra, we obtain

δκ(h) def=
{

1 if Sκ ≥ h
0 if Sκ < h

, Sκ =
θ

σ2

κN∑
i=(κ−1)N+1

(
yi − θ

2

)
.

(17)
The case of zero-mean pre-change Gaussian law is assumed here
and in the sequel without loss of generality.

Based on the above model, we provide the theoretical results
needed to obtain closed-form expressions for the worst-case
PMD and PFA of the FSS test and to optimize it w.r.t. the criterion
(4)–(5).

Corollary 1 (of Theorem 1: Worst-case PFA in the Gaussian
mean case): Let TFSS be the FSS stopping time (6) with the
block sizeN ≥ 1 and detection threshold h, where the decision
function is defined in (17). The worst-case PFA in a given
reference period mα is

Pfa(TFSS;N,h) = 1 −
[
Φ
(
h+N�/2√

�N

)]	mα
N 


, (18)

where � = θ2/σ2 is the signal-to-noise ratio (SNR) and Φ(x) =∫ x

−∞(1/
√

2π) exp{−u2/2}du denotes the CDF of the standard
normal distribution.

Proof: It follows from (16) and (17) that the LLR Sκ obeys
the Gaussian distributionN (−N�/2, N�) under the pre-change
regime. It follows from (11) that

G0(N,h) = P0(Sκ < h) = Φ
(
h+N�/2√

�N

)
. (19)

Putting together (12) and (19), we prove (18). �
Corollary 2 (of Theorem 2: Worst-case PMD in the Gaussian

mean case): Let TFSS be the FSS stopping time (6) with the
block sizeN (1 ≤ N ≤ L) and detection threshold h, where the
decision function is defined in (17). Then the PMD γ1 of the
N-P test applied to the transition block is given by

γ1(ν,N, h) = Pν(Sν
1 < h) = Φ

(
h+ (ν −N/2 − 1)�√

�N

)
,

(20)
where Sν

1 = θ
σ2

∑N
i=1(yi − θ

2 ) is the LLR of the transition
block with 1 ≤ ν ≤ N . The PMD γ2 of the sequence of N-P
tests applied to � L

N � − 1 blocks contained only the post-change
observations is

γ2(N,h) = [G1(N,h)]�
L
N �−1 =

[
Φ
(
h−N�/2√

�N

)]� L
N �−1

.

(21)
The worst-case PMD Pmd(TFSS;N,h) (13)–(14) of the FSS test
is given by

Pmd(TFSS;N,h) = max
1≤ν≤N

A(ν,N, h) = A(ν∗, N, h)

= γ1(ν∗, N, h)γ2(N,h). (22)

Proof: The proof is given in Appendix C. �
Because (18) defines a bijective function, there exists a unique

solution h = h(α) of the equation Pfa(TFSS;N,h) = α. In the
sequel we use α instead of h in the notations, wherever it is not
confusing.

2) Asymptotic Optimization in the Gaussian Mean Case:
Corollaries 1 and 2 from the previous section provide us with
the elements needed to get the optimal block sizeN ∗ for the FSS
test. Nevertheless, even in the Gaussian mean case, the problem
(15) is analytically intractable due to the numerous combinations
of L and N , the presence of the functions floor �.�, ceil 	.
 and
ν∗ = (� L

N � + 1)N − L. The main difficulty corresponds to the
worst-case PMD Pmd(TFSS;N,h) given by (22) with the terms
γ1(ν,N, h) and γ2(N,h) defined in (20) and (21).

Therefore, the FSS test optimization will be done by
using the criterion of optimality (4)–(5), the worst case
PFA (18) and the upper bound γ(N,α) ≥ Pmd(TFSS;N,α) =
γ1(ν∗, N, α)γ2(N,α) for the worst-case PMD (22). Neverthe-
less, even with such an upper bound for Pmd(TFSS;N,α), its
minimization is not a trivial problem and it can be done only
asymptotically when α→ 0+.

Theorem 3 (Optimization problem): Let TFSS be the FSS
stopping time (6) with the block size N ≥ 1 and the detection
threshold h, where the decision function is defined in (17). It is
assumed that TFSS ∈ Cα. The optimal choice of the block size
N is reduced to the following minimization problem

N ∗ = argmin
1≤N≤L

γ(N,α) as α→ 0+, (23)

where γ(N,α) is an upper bound for Pmd(TFSS;N,α) defined
as follows

γ(N,α) =

{
γ1(N,N,α)γ2(N,α) if 1 ≤ N ≤ �L

2 �
γ1(ν∗, N, α) if �L

2 � + 1 ≤ N ≤ L.

(24)

γ1(ν,N, α) = Φ
[
Φ−1

(
(1 − α)

1

	mα
N 


)
− (N − ν + 1)√�√

N

]
(25)

γ2(N,α) =
(

Φ
[
Φ−1

(
(1 − α)

1

	mα
N 


)
−
√
�N

])� L
N �−1

.

(26)

The asymptotically optimal parameters N ∗ and h∗ of the FSS
test (6), (17), which realize the optimum in (23) as α→ 0+, are
given by

N ∗ = 	L/2
 (27)

h∗ =
√
� 	L/2
Φ−1

(
(1 − α)

1⌈
mα

	L/2

⌉)

− �

2
	L/2
 . (28)

Proof: The detailed proof is given in Appendix D but a short
sketch of the proof is as follows. We note the following technical
novelty and subtlety of the worst-case PMD Pmd(TFSS;N,α)
minimization w.r.t. the criterion (4)–(5). Let TFSS ∈ Cα. The
exact worst-case PMD N �→ Pmd(TFSS;N,α) as a function of
the block size N for a given value of α is untractable due to a
number of local minima and maxima. This fact motivated the au-
thors to divide the interval of definition [1, L] (L ≥ 2) of natural
numbersN into two subintervals [1, �L/2�] and [�L/2� + 1, L]
and to use the following upper bounds instead of exact function
N �→ Pmd(TFSS;N,α). The PMD Pmd(TFSS;N,α) is a product
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of the two terms: γ1 and γ2, see (22). If N ∈ [1, �L/2�], the
term to minimize is γ2(N,α) but the term γ1(ν∗, N, α) is just
upper bounded by γ1(N,N,α), which tends to 1 whenα→ 0+.
If N ∈ [�L/2� + 1, L], the term to minimize is γ1(ν∗, N, α)
but γ2(N,α) = 1. Let γ1 (resp. γ2) be an upper bound for γ1
(resp. γ2). To find the optimal block size N ∗, which minimizes
the upper bound for A(ν∗, N, α), we show that N �→ γ2(N,α)
is a decreasing function in [1, �L/2�] and N �→ γ1(ν∗, N, α)
is an increasing function in [�L/2� + 1, L]. Finally, to “glue”
these two functions together, we consider two different cases: i)
L = 2n, n ∈ Z

+, is an even number; ii) L = 2n+ 1 is an odd
number and we get the optimal block size N ∗ = 	L/2
. �

Let us examine now two TCD problems, where the LLRSκ of
the FSS test is non-Gaussian. The first case study is the detection
of transient changes in the variance of Gaussian distribution and
the second one is the detection of transient changes in the rate of
the exponential distribution. The operating characteristics will
be used for the numerical optimization of the block size N .

B. Transient Change in the Variance

Let us re-write the generative TCD model (3) for the Gaussian
variance case

yn ∼
{N (0, σ2

0) if 1 ≤ n < ν
N (0, σ2

1) if ν ≤ n ≤ ν + L− 1 , (29)

where N (0, σ2) stands for the zero-mean Gaussian law with
variance σ2. Let us also re-write the FSS test (7) for the Gaussian
variance case. Without loss of generality, let us assume in the
sequel that σ0 < σ1

1. After simple algebra, we obtain

δκ(h) def=

{
1 if Sκ ≥ h

0 if Sκ < h
, Sκ =

κN∑
i=(κ−1)N+1

y2i . (30)

Based on the above model, we provide the theoretical results
needed to obtain the expressions for the worst-case PMD and
PFA of the FSS test and to numerically optimize it w.r.t. the
criterion (4)–(5).

Corollary 3 (of Theorem 1: Worst-case PFA in the Gaussian
variance case): Let TFSS be the FSS stopping time (6) with
the block size N ≥ 1 and detection threshold h, where the
decision function is defined in (30). The worst-case PFA in a
given reference period mα is

Pfa(TFSS;N,h) = 1 − [
Fχ2

(
h/σ2

0 ;N
)]	mα

N 

, (31)

where Fχ2(x;N) =
∫ x

0

e−u/2uN/2−1

2N/2Γ(N/2)
du denotes the CDF of

the χ2
N distribution with N degrees of freedom and x �→ Γ(x)

is the gamma function.
Proof: By substituting the definition of CDF G0(N,h) =

P∞(Sκ < h) = Fχ2(h/σ2
0 ;N) into (12), we immediately ob-

tain (31). �
Corollary 4 (of Theorem 2: Worst-case PMD in the Gaussian

variance case): Let TFSS be the FSS stopping time (6) with the

1If σ0 > σ1 then the inequality in the definition of δκ(h) (30) must be
reversed.

block sizeN (1 ≤ N ≤ L) and detection threshold h, where the
decision function is defined in (30). Then the PMD γVar

1 of the
N-P test applied to the transition block is given by

γVar
1 (ν,N, h) = Pν(Sν

1 < h) = P

(
N∑
i=1

di(ν)ξ2i < h

)
,

(32)
where the sum Sν

1 =
∑N

i=1 y
2
i corresponds to the transition

block with 1 ≤ ν ≤ N , ξi ∼ N (0, 1) and

di(ν) =
{
σ2
0 if i < ν
σ2
1 if ν ≤ i ≤ N

. (33)

The CDF of Sκ under the distribution N (0, σ2
1) is given by

GVar
1 (N,h) = P1(Sκ < h) = Fχ2

(
h/σ2

1 ;N
)
. (34)

The worst-case PMD Pmd(TFSS;N,h) of the FSS test (6),
(30) is given by (13)–(14) with γ1 = γVar

1 (ν,N, h) (32) and
G1(N,h) = GVar

1 (N,h) (34).
Proof: The proof of (32)–(33) follows from the definitions

of the transient change generative model (29) and the decision
function (30). The proof of (34) follows immediately from the
definition of the χ2

N distribution. �
Because (31) defines a bijective function, there exists a unique

solution h = h(α) of the equation Pfa(TFSS;N,h) = α. The
main problem is to compute γVar

1 . The exact CDF of the quadratic
form in Gaussian variables

∑N
i=1 di(ν)ξ2i is available only for

some special cases and its calculation is very difficult (see
Chapter 4.6 in [40]). Instead, we use an approximation given
in [40], [41]:

P

(
N∑
i=1

d̃iξ
2
i < x

)
= min {H1(x), H2(x)} , (35)

where ξi ∼ N (0, 1), d̃i > 0, i = 1, . . . , N ,
∑N

i=1 d̃i = 1,

H1(x) =
N∑
i=1

d̃i
γ
(

1/(2d̃i), x/(2d̃i)
)

Γ(1/(2d̃i))
, (36)

the incomplete gamma function is γ(p, x) =
∫ x

0 u
p−1e−udu and

H2(x) = Fχ2(x/δd;N), δd =

(
N∏
i=1

d̃i

)1/N

. (37)

Finally, we get

γVar
1 (ν,N, h) = P

(
N∑
i=1

d̃i(ν)ξ2i <
h

d(ν)

)
, (38)

where ξi ∼ N (0, 1), d̃i = di(ν)/d(ν) stands for the normalized
coefficients and d(ν) =

∑N
i=1 di(ν) for 1 ≤ ν ≤ N .

C. Transient Change in Exponential Distribution

Let us re-write the generative TCD model (3) for the expo-
nential distribution Exp(λ)

yn ∼
{

Exp(λ0) if 1 ≤ n < ν
Exp(λ1) if ν ≤ n ≤ ν + L− 1 , (39)
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where λ stands for the rate of the exponential distribution. The
PDF of Exp(λ) is given by

f(x;λ) =
{
λe−λx if x ≥ 0

0 if x < 0 . (40)

Let us also re-write the FSS test (7) for the exponential distri-
bution Exp(λ). Without loss of generality, let us assume in the
sequel that λ0 > λ1

2. After simple algebra, we obtain

δκ(h) def=

{
1 if Sκ ≥ h

0 if Sκ < h
, Sκ =

κN∑
i=(κ−1)N+1

yi. (41)

Based on the above model, we provide the theoretical results
needed to obtain the expressions for the worst-case PMD and
PFA of the FSS test and to numerically optimize it w.r.t. the
criterion (4) – (5).

Corollary 5 (of Theorem 1: Worst-case PFA in the exponential
case): Let TFSS be the FSS stopping time (6) with the block size
N ≥ 1 and detection threshold h, where the decision function is
defined in (41). The worst-case PFA in a given reference period
mα is

Pfa(TFSS;N,h) = 1 − [
Fχ2 (2hλ0; 2N)

]	mα
N 


. (42)

Proof: It follows from the definition of χ2
n distribution that

the exponentially distributed random variable with λ = 1/2
obeys the χ2

2 distribution with 2 degrees of freedom, i.e.,
ξ ∼ Exp(1/2) ∼ χ2

2. By substituting the definition of CDF
G0(N,h) = P0(Sκ < h) = Fχ2(2hλ0; 2N) into (12), we im-
mediately obtain (42).

As previously, the main problem is to compute the PMD
γExp
1 of the N-P test applied to the transition block. The dis-

tribution of the sum of exponential variables
∑N

i=1 yi, where
yi ∼ Exp(λi), obeys the hypoexponential distribution (or the
generalized Erlang distribution) [42]. The exact CDF of the
hypoexponential distribution is available only for some special
cases of λ1, . . . , λN and its calculation is very difficult. Hence,
based on the fact that ξ ∼ Exp(1/2) ∼ χ2

2, we use again the
approximation proposed in [41].

Corollary 6 (of Theorem 2: Worst-case PMD in the expo-
nential case): Let TFSS be the FSS stopping time (6) with the
block sizeN (1 ≤ N ≤ L) and detection threshold h, where the
decision function is defined in (41). Then the PMD γExp

1 of the
N-P test applied to the transition block is given by

γExp
1 (ν,N, h) = Pν(Sν

1 < h) = P

(
N∑
i=1

di(ν)ζi < h

)
,

(43)
where the sumSν

1 =
∑N

i=1 yi corresponds to the transition block
with 1 ≤ ν ≤ N , ζi ∼ χ2

2 and

di(ν) =
{

1/(2λ0) if i < ν
1/(2λ1) if ν ≤ i ≤ N

. (44)

The CDF of Sκ under the distribution Exp(λ1) is given by

GExp
1 (N,h) = P1(Sκ < h) = Fχ2 (2hλ1; 2N) . (45)

2If λ0 < λ1 then the inequality in the definition of δκ(h) (41) must be
reversed.

Fig. 1. The true worst-case PMD Pmd(TFSS;N,α) given by (22) and its
upper bounds as functions of the block size N . The SNR is � = 9, the required
time-to-alert is L = 10, the reference period is mα = 20, and the worst-case
PFA is α = 10−4.

Fig. 2. The true worst-case PMD Pmd(TFSS;N,α) given by (22) and its
upper bounds as functions of the block size N . The SNR is � = 9, the required
time-to-alert is L = 11, the reference period is mα = 20, and the worst-case
PFA is α = 10−4.

The worst-case PMD Pmd(TFSS;N,h) of the FSS test (6),
(41) is given by (13)–(14) with γ1 = γExp

1 (ν,N, h) (43) and
G1(N,h) = GExp

1 (N,h) (45).
Proof: The proof of (43)–(44) follows from the definitions

of the transient change generative model (39) and the decision
function (41). The proof of (45) follows immediately from the
definition of the χ2

2N distribution. �

VI. NUMERICAL RESULTS

A. Gaussian Mean Case

This section is dedicated to the numerical analysis of the
accuracy and sharpness of the asymptotic solution obtained in
optimization Theorem 3. First of all, let us compare the true PMD
N �→ Pmd(TFSS;N,α) given by (22) with its upper bounds
N �→ γ1(N,N,α)γ2(N,α) defined in the interval [1, �L/2�]
and N �→ γ1(ν∗, N, α) defined in the interval [�L/2� + 1, L]
for two different cases of L = 2n and L = 2n+ 1. The re-
sults of this comparison are presented in Figs. 1 and 2 for the
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Fig. 3. The minimum worst-case PMD Pmd(TFSS) given by (46) and its
upper bound γ(N∗) (24) with the asymptotically optimal N∗ as functions of the
worst-case PFA α. The SNR is � = 4, the required time-to-alert is L = 20, the
reference period is mα = 150, and the worst-case PFA belongs to the interval
α ∈ [10−7, 0.25].

following parameters: the SNR � = 9, L = 10, 11, mα = 20,
and α = 10−4. Here and in the rest of the paper, we use the
parameters typical for some real-time applications, such as
the navigation systems integrity monitoring and the drinking
water monitoring (see [13], [16]–[18], [43] and the example
on GNSS integrity monitoring given in Section VII-A). First,
these figures illustrate the main idea of Theorem 3: if the
required time-to-alert is an even number, i.e. L = 2n, then the
asymptotically optimal block size is N ∗ = n but if L = 2n+ 1
then N ∗ = n+ 1. Second, as it follows from the definition of
the function N �→ γ1(N,N,α) in the interval [1, �L/2�], this
upper bound cannot be very accurate forN �→ γ1(ν∗, N, α) due
to the fact that ν∗ = (� L

N � + 1)N − L is simply replaced byN .
Hence, it is clear that for the non-asymptotic values of α, the
upper bounding in the interval [1, �L/2�] is less accurate than
in the interval [�L/2� + 1, L]. Hence, a more rapid convergence
of the upper bound to the true worst-case PMD Pmd(TFSS;α)
can be expected in the case of L = 2n+ 1. This conclusion is
confirmed by Figs. 3 and 4. Here, the non-asymptotic minimum
worst-case PMD

Pmd(TFSS;α) = min
1≤N≤L

{γ1(ν∗, N, α)γ2(N,α)} (46)

obtained by numerical optimization of (22) and its upper bound
γ(N ∗, α) in (24) are presented as functions of the worst-case
PFA α for the following parameters typical for some real-
time applications: SNR � = 4, L = 20, 21, mα = 150, and
α ∈ [10−7, 0.25]. It follows that the 5% accuracy is reached
at α = 10−3 for L = 20 and the same accuracy is reached at
α = 1.5 · 10−2 for L = 21.

B. Two Non-Gaussian LLR Settings

Let us return to the examination of the TCD problem when
the sum Sκ of the FSS test is non-Gaussian. The calculation of
the worst case PMD and PFA of the FSS test for the detection
of transient changes in the variance of Gaussian distribution
has been considered in Section V-B and for the detection of

Fig. 4. The minimum worst-case PMD Pmd(TFSS) given by (46) and its
upper bound γ(N∗) (24) with the asymptotically optimal N∗ as functions of the
worst-case PFA α. The SNR is � = 4, the required time-to-alert is L = 21, the
reference period is mα = 150, and the worst-case PFA belongs to the interval
α ∈ [10−7, 0.25].

Fig. 5. The worst-case PMD Pmd(TFSS;N,α) as a function of the block
size N for the following three cases: – Gaussian mean; – Gaussian variance;
– exponential distribution. The required time-to-alert is L = 21, the reference
period is mα = 20, and the worst-case PFA is α = 10−5.

transient changes in the rate of the exponential distribution in
Section V-C. The goal of this section is to examine the numerical
optimization of the block size N for non-Gaussian setting and
extend the results obtained for the Gaussian mean case to some
practical situations where observations are non-negative (e.g.,
daily number of infected people in the epidemics).

Let us compare the worst case PMD as a function of the
block size N �→ Pmd(TFSS;N,α) for the Gaussian mean case
(22) with the the same functions for the transient changes in the
variance, calculated by (13)–(14) with γ1 = γVar

1 (ν,N, h) (32)
and G1(N,h) = GVar

1 (N,h) (34), and for the transient changes
in the rate of the exponential distribution, calculated by (13)–
(14) with γ1 = γExp

1 (ν,N, h) (43) and G1(N,h) = GExp
1 (N,h)

(45). The results of comparison are presented in Fig. 5 for the
following parameters: L = 21, mα = 20, and α = 10−5. The
models of transient changes are defined as follows:
� Gaussian mean: � = 3;
� Gaussian variance: σ2

1/σ
2
0 = 5;

� Exponential distribution: λ1/λ0 = 0.25.
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Fig. 6. The optimal block size N∗ as a function of the worst-case PFA α for
the following three cases: – Gaussian mean; – Gaussian variance; – exponential
distribution. The required time-to-alert is L = 21 and the reference period is
mα = 20.

Fig. 7. The minimum worst-case PMD Pmd(TFSS;N
∗, α) as a function of

the worst-case PFAα for the following three cases: – Gaussian mean; – Gaussian
variance; – exponential distribution. The required time-to-alert is L = 21 and
the reference period is mα = 20.

Fig. 5 shows that the behaviour of the function N �→
Pmd(TFSS;N,α) for two non-Gaussian LLR settings is similar
to the Gaussian mean case. Less pronounced minima of the func-
tion N �→ Pmd(TFSS;N,α) for the non-Gaussian LLR settings
is explained by the reduced separability between the pre-change
and post-change χ2 and exponential distributions due to the fact
that their support is limited to the real semi-axis x ∈ [0,∞[.

As it follows from Theorem 3, the main source of the mini-
mum worst-case PMD Pmd(TFSS;N ∗(α), α) overestimation by
its upper bound is a non-asymptotic behaviour of the optimal
block size N ∗(α) < 	L/2
 for significant values of the PFA
α. To illustrate this situation, the optimal block sizes N ∗ as
functions of the worst-case PFA α are shown in Fig. 6. Next, the
minimum worst-case PMD Pmd(TFSS;N ∗(α), α) as functions
of the worst-case PFA α are shown in 7. Both figures represent
the three following settings: – Gaussian mean; – Gaussian vari-
ance; – exponential distribution. Due to the reduced separability
between the pre-change and post-change χ2 and exponential
distributions, the convergence rate of the optimal block size N ∗

to its asymptotic value is reduced for the non-Gaussian LLR
settings (see Fig. 6). For the three above-mentioned settings,
the functions α �→ Pmd(TFSS;N ∗(α), α) are quite similar with
correction for the separability between the pre-change and post-
change distributions (see Fig. 7).

VII. COMPARISON BETWEEN THE FSS, WINDOW-LIMITED

CUSUM AND FMA TESTS

A. Gaussian Mean Case

Let us compare the FSS, window-limited CUSUM and FMA
tests in the Gaussian mean case. The upper bound for the worst-
case PMD Pmd(TFMA;α) as a function of the worst-case PFA
α is given as follows [18], [26]:

Pmd(TFMA;α) = Φ
(

Φ−1
(

(1 − α)
1

mα

)
−
√
�L

)
. (47)

The minimum worst-case PMD Pmd(TFSS;α) of the FSS test
is given by (46) with γ1(ν∗, N, α) (25) and γ2(N,α) (26). Its
upper bound γ(N ∗, α) is given by (24) with the asymptotically
optimal block size N ∗ = 	L/2
.

We exclude from our comparison the case of L = 1 when
the FSS, window-limited CUSUM and FMA tests coincide (see
the analysis of this case in [24], [25]). In the case of L = 1,
the upper bounds for the worst-case PMD become equal to
the worst-case PMD for both tests Pmd(TFSS;α) = γ(1, α) =
Pmd(TFMA;α) = Pmd(TFMA;α).

Let us compare the equation for Pmd(TFMA;α) with the equa-
tions for the minimum worst-case PMD Pmd(TFSS;N ∗(α), α)
and its upper bound γ(N ∗, α) for the FSS test. Their structures
are very similar (compare (24) – (26) and (47)): in both cases
the argument of the function x �→ Φ(x) is a sum of two terms.
The first terms, i.e. Φ−1((1 − α)

1
mα ) for the FMA test and

Φ−1((1 − α)
1

	mα
N∗ 
 ) for the FSS test, are responsible for the

relation between α and Pmd(T ). The second terms, i.e.
√
�L

for the FMA test and
√
� 	L/2
 or (	L/2
−ν+1)

√

√

	L/2
 for the FSS

test, define the square root of information (in Kullback–Leibler
sense) obtained during the time-to-alertL. It follows from Theo-
rem 3 thatN ∗ → 	L/2
whenα→ 0+ and in any case,N ∗ ≥ 1.
Hence, the first term of the FSS test reduces the worst-case
PMD not worse (even better) than the first term of the FMA
test. On the other hand, the quantity of information extracted by
the FMA test is asymptotically (when α→ 0+) twice as large
as the quantity of information extracted by the FSS test. Hence,
it can be expected that the FMA test should perform better for
practically interesting situations when α→ 0+ and the second
terms are dominant.

The first comparison between the FSS, FMA and window-
limited CUSUM tests is presented in Fig. 8 for the following pa-
rameters: � = 0.25,L = 100,mα = 200, and α ∈ [10−5, 0.99].
Because we are interested in non-asymptotic values of α,
we use the minimum worst-case PMD Pmd(TFSS;N ∗(α), α)
and its upper bound γ(N ∗, α) for the FSS tests (which is
closed to the true PMD), the simulated worst-case PMD
Pmd(TFMA;α) and its upper bound for the FMA test and the
simulated PMD Pmd(TWL;α) for the window-limited CUSUM
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Fig. 8. The minimum worst-case PMD Pmd(TFSS) of the FSS test, its upper
bound γ(N∗), the simulated worst-case PMD Pmd(TFMA) of the FMA test,
its upper bound given by (47) and the simulated worst-case PMD Pmd(TWL)
of the window-limited CUSUM test as functions of the worst-case PFA α. The
SNR is � = 0.25, the required time-to-alert is L = 100, the reference period is
mα = 200, and the worst-case PFA belongs to the interval α ∈ [10−5, 0.99].

test (9) with a(k) = a, k = 1, . . . , L. To get the simulated PMD
Pmd(TFMA;α) and Pmd(TWL;α), 106 Monte-Carlo runs have
been performed. It follows that the FMA test outperforms the
FSS and window-limited CUSUM tests.

The second comparison between the FSS and FMA tests is
related to the important problem of radio-navigation integrity
monitoring. Certainly, the considered model of signal is simpli-
fied but it is sufficient to show very promising results for the
GNSS (GPS, Glonass, Galileo, Beidou,...) integrity monitoring.

Example [GNSS integrity monitoring] For safety-critical civil
aircraft navigation modes (landing, takeoff, etc.), a major prob-
lem of existing navigation systems consists of their lack of
integrity. The integrity monitoring concept requires a navigation
system to detect the faults and remove them from the navigation
solution before they sufficiently contaminate the output. Let us
consider the receiver autonomous integrity monitoring (RAIM)
of the GNSS channels. Some insight into the RAIM can be
found in [13], [43]. The RAIM is a method of GNSS integrity
monitoring that uses redundant measurements (satellite pseudo-
ranges) at the user’s satellite receiver. In the nominal situation
the pseudorange measurements are affected by random noise
obeying a zero-mean Gaussian distribution. Suddenly arriving
additional biases (faults) in pseudoranges lead to a degradation
of the position estimation, which is clearly undesirable. Due to
the redundant pseudorange measurements, the residuals of the
least squares estimator provide the user with information on the
presence or absence of faults in measured pseudoranges. Hence,
a simplified model of pre-change and post-change pseudorange
residuals is reduced to (16), where ν is the fault onset time. The
minimum operational performance standards (MOPS) for the
GPS system [43] specifies, for the (non-) precision approach
of typical duration mα, the required time-to-alert L (both are
measured in number of sampling periods), the worst-case PMD
and the worst-case PFA during a periodmα. The signal sampling
period is usually 1 sec. Let us compare the FMA and FSS
tests for the following typical parameters: L = 6, mα = 150,

Fig. 9. The minimum worst-case PMD of the FSS and FMA tests as functions
of the fault amplitude θ ∈ [2, 5.8].

α = 2 · 10−5. The variance in the TCD model (16) is σ2 = 1
to simplify notations. The worst-case PMD Pmd(TFSS) and
Pmd(TFMA) as functions of the residual fault amplitude θ are
shown in Fig. 9. It follows that the FMA test significantly
outperforms the FSS test with the optimal block size N ∗ = 3
for all values of θ ∈ [2, 5.8]. A typical MOPS in terms of the
worst-case PMD is Pmd(T ) = 8 · 10−4. Therefore, the FMA test
respects this MOPS beginning from θ = 3.4 but the FSS test
only from θ = 4.7. The minimum detectable fault amplitude
(respecting the MOPS) defines the horizontal/vertical alarm
limits. The reduction of these alarm limits improves the safety
of aircraft and air traffic control.

B. Two Non-Gaussian LLR Settings Vs. The Gaussian Mean
Case

Let us continue the comparison of the FSS and FMA tests for
two non-Gaussian LLR settings (χ2 and exponential) to verify
how the operating characteristics of the FSS and FMA tests
differ from those obtained in Section VII-A for the Gaussian
mean case.

In the case of transient change in the variance, the upper
bound for the worst-case PMD Pmd(TFMA;α) as a function of
the worst-case PFA α is given as follows [18], [26]:

Pmd(TFMA;α) = Fχ2

(
σ2
0

σ2
1

F−1
χ2

(
(1 − α)

1
mα ;L

)
;L

)
, (48)

where x �→ Fχ2(x;L) stands for the CDF of the χ2 distribution
withL degrees of freedom, and in the case of exponential distri-
bution, the upper bound for the worst-case PMD Pmd(TFMA;α)
is

Pmd(TFMA;α) = Fχ2

(
λ1
λ0
F−1
χ2

(
(1 − α)

1
mα ; 2L

)
; 2L

)
.

(49)
As previously (see Subsection V-B and V-C), it is assumed that
σ0 < σ1 and λ0 > λ1. We use the same set of parameters as in
Section VI-B:L = 21 andmα = 20. First, we compare the FSS
and FMA tests for the transient change detection in Gaussian
mean as a reference case for the non-Gaussian settings. The
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Fig. 10. The minimum worst-case PMD Pmd(TFSS) of the FSS test and the
upper bound for the PMD Pmd(TFMA) of the FMA test given by (47) as
functions of the worst-case PFA α for the Gaussian mean case. The SNR is
� = 3, the required time-to-alert is L = 21, mα = 20, and the worst-case PFA
belongs to the interval α ∈ [10−7, 0.99].

Fig. 11. The minimum worst-case PMD Pmd(TFSS) of the FSS test and
the upper bound for the PMD Pmd(TFMA) of the FMA test given by (48) as
functions of the worst-case PFA α for the Gaussian variance case. The variances
ratio is σ2

1/σ
2
0 = 5, the required time-to-alert is L = 21, mα = 20, and the

worst-case PFA belongs to the interval α ∈ [10−7, 0.99].

results for the SNR � = 3 are presented in Fig. 10. The compar-
ison of FSS and FMA tests for the Gaussian variance with the
ratio σ2

1/σ
2
0 = 5 is shown in Fig. 11 and for the exponential case

with the ratio λ1/λ0 = 0.25 is shown in Fig. 12. It follows from
Figs. 10, 11 and 12 that the FMA test outperforms the FSS test
for both the Gaussian LLR setting and the non-Gaussian LLR
settings for all values of the PFA α ∈ [10−7, α], where α takes
the values 0.618 for the Gaussian mean, 0.097 for the Gaussian
variance and 0.224 for the exponential distribution. Hence, the
relationship between the FSS and FMA tests is similar for three
different settings with correction for the separability between the
pre-change and post-change distributions, which only impacts
the value of α.

VIII. DISCUSSION

As it follows from the FSS stopping time definition (6) –
(8), the FSS test is based on the repeated N-P tests applied

Fig. 12. The minimum worst-case PMD Pmd(TFSS) of the FSS test and
the upper bound for the PMD Pmd(TFMA) of the FMA test given by (49)
as functions of the worst-case PFA α for the exponential case. The parameter
ratio is λ1/λ0 = 0.25, the required time-to-alert is L = 21, mα = 20, and the
worst-case PFA belongs to the interval α ∈ [10−7, 0.99].

to the sequence of blocks of a fixed size N . Hence, a key
problem of the FSS test designer is to find an optimal block
sizeN ∗ by using the transient change detection criterion (4) – (5)
which minimizes the worst-case probability of missed detection,
i.e., the situation when TFSS − ν + 1 > L, provided that the
worst-case probability of false alarm in a given period mα is
upper bounded. Knowing N ∗, the optimal threshold h∗ follows
immediately from the definition of the class Cα (5).

To realize such a scheme, Theorems 1 and 2 provide the
designer with the equations for the worst-case probabilities of
missed detection Pmd(TFSS) and false alarm Pfa(TFSS) as func-
tions of the FSS tuning parameters N , h and the pre- and post-
change distributionsF0 andF1. Corollaries 1 – 6 concretize these
general results in the special cases of the Gaussian,χ2 and expo-
nential LLR distributions. These three cases cover two different
types of measured signals defined by their support. The support
of the Gaussian distribution is the real axis x ∈] −∞,∞[ but
the supports of the χ2 and exponential distributions are limited
to the real semi-axis x ∈ [0,∞[. Next, Theorem 3 establishes
an asymptotically optimal solution for the Gaussian mean case.
Here, the asymptotically optimal FSS tuning parameters N ∗,
h∗ and the upper bound γ(N ∗, α) for the probability of missed
detection Pmd(TFSS;α) are represented as functions of the up-
per bound α for Pfa(TFSS), required time-to-alert L, reference
period mα and SNR �. The comparison between the optimal
probability of missed detection Pmd(TFSS;α), obtained by the
numerical FSS test optimization, and its asymptotically optimal
upper bound γ(N ∗, α) shows that this upper bound is rather
sharp in practically interesting case of small α. A numerical
optimization of the FSS test has been considered for the χ2 and
exponential distributions.

The optimal FSS test has been compared against the FMA test
for the three above-mentioned LLR distributions. The choice
of the FMA test as a sequential competitor is justified for the
following reasons. The general issue of optimality or asymp-
totic optimality in the TCD problem (4) – (5) is still open but
the FMA test is obtained by optimizing the window-limited
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CUSUM test w.r.t. criterion (4) – (5) in a restricted class of
truncated sequential tests. These comparisons show that the
relationship between the operating characteristics of the FSS
and FMA tests in the case of non-Gaussian LLR settings does
not differ substantially from the Gaussian mean case. Some
slight difference is due to the different separability between
the pre-change and post-change distributions in the cases of
Gaussian, χ2 and exponential settings. It is shown that the FSS
test outperforms the FMA test for significant probability of false
alarm, which has perhaps only theoretical rather than practical
importance. For small probabilities of false alarm, which is
typical in applications, the FMA test outperforms the FSS test
for all settings.

It is worth noting that the relationship between the FSS test
and the FMA test as sequential competitor in the TCD problem
qualitatively corresponds to the relationship between the FSS
and CUSUM tests in the QCD problem (see [29], [32]–[38],
[44]). For both the QCD and the TCD problems the FSS test
outperforms the FMA (resp. CUSUM) test for a high rate of false
alarms, but for a lower rate of false alarms (which is typical in
applications) the FMA (resp. CUSUM) test performs better than
the FSS test. Theorem 3 shows that the asymptotically optimal
block size N ∗ of the FSS test is equal to a half of the required
time-to-alert L in the TCD problem. Accordingly, as follows
from [29], [36], [38], the asymptotically optimal block size N ∗

of the FSS test is equal to a half of the worst-worst-case mean
detection delay E(T ) (2) in the QCD problem.

Often the algorithm designer has to choose between the
operating characteristic of the transient change detector and its
complexity. Hence, another performance metric to consider in
comparing the FSS and FMA tests is their respective complexity
of implementation. Although the realization of the FSS and
FMA tests involves the same number of LLR calculation per
observation, the FSS test is simpler and easily adaptable for
practical implementation due to its block-by-block method of
data transmission, LLR calculation and decision-making. By
using the obtained theoretical results, the designer can find a
tradeoff between the loss of optimality and the computational
burden of the detection scheme.

IX. CONCLUSION

In this paper, we have studied the statistical properties of the
FSS test w.r.t. the transient change detection criterion which min-
imizes the worst-case probability of missed detection provided
that the worst-case probability of false alarm in a given period is
upper bounded. The operating characteristics of the FSS test are
obtained in the general case of arbitrary pre- and post-change
distributions. Next, these operating characteristics have been
concretized for three particular LLR distributions: Gaussian, χ2

and exponential. The optimization of the FSS tuning parameters
has been considered for these distributions. An asymptotically
optimal analytical solution has been obtained in the Gaussian
case. Next, the FSS test has been compared against its sequential
competitor, i.e., the FMA test. Finally, the application of both
the FSS and the FMA tests to the radio-navigation integrity
monitoring and their comparison demonstrate some promising
results.

APPENDIX A
PROOF OF THEOREM 1

To prove (12), let us first calculate the maximum number Nd

of decisions taken by the N-P test (7) during the reference period
mα. It is obvious that Nd =

⌈
mα

N

⌉
. Due to the fact that the pre-

change observations are i.i.d., the random number M ∈ [0, Nd]
of the events {dn = 1} during the reference period mα follows
the binomial distribution B(Nd, p), where p = 1 −G0(N,h).
Hence, the probability of the event {M > 0} defines the worst-
case PFA of the FSS test with the stopping time TFSS (6)

Pfa(TFSS;N,h) = 1 − (1 − p)Nd = 1 − [G0(N,h)]	mα
N 
 .

(50)

APPENDIX B
PROOF OF THEOREM 2

The proof of Theorem 2 is divided in two parts. In Parts 1
the worst-case PMD Pmd(TFSS) of the FSS test is defined as
a product of N-P test error probabilities. Parts 2 is devoted to
the calculation of the number of factors in this product and the
worst-case PMD Pmd(TFSS).

Part 1: Since the proof forN > L is trivial, i.e. the worst-case
PMD is Pmd(TFSS) = 1, we will prove the case when 1 ≤ N ≤
L. Let us consider the following probability

Pν≥1(TFSS > ν + L) = [P0(Sκ < h)]�
ν−1
N �

·
� ν+L−1

N �∏
κ=� ν−1

N �+1

P ν≥N (Sκ < h), (51)

where Sκ is the LLR of the N-P test in the κ-th block of
observations. Next, we define the probability that no false alarms
occur before the change-point

P ν≥1(TFSS > ν) = [P0(Sκ < h)]�
ν−1
N � . (52)

Hence, we get the following conditional PMD

Pν≥1(TFSS > ν + L|TFSS ≥ ν) =
� ν+L−1

N �∏
κ=� ν−1

N �+1

P ν≥N (Sκ < h).

(53)
The pre-change observations are i.i.d. and the sequential blocks
of observations are also i.i.d. Therefore, this conditional proba-
bility is a periodic function of the change-point ν (the period is
equal to N ). In order to simplify the notation, it is sufficient to
consider that ν = {1, 2, . . . , N}:

Pmd(TFSS;N,h) = max
ν∈[1,N ]

A(ν,N, h)

= max
ν∈[1,N ]

� ν+L−1
N �∏

κ=1

P ν(Sκ < h). (54)

Part 2: Let us calculate the number of factors in this product
(54). Let us consider two real numbers x, y ∈ IR. The following
inequality takes place �x� + �y� ≤ �x+ y� ≤ �x� + �y� + 1.
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Hence⌊
ν − 1
N

⌋
+
⌊
L

N

⌋
≤

⌊
ν + L− 1

N

⌋
≤

⌊
ν − 1
N

⌋
+
⌊
L

N

⌋
+ 1.

(55)
Since ν ∈ [1, N ], we get � ν−1

N � = 0. Therefore⌊
L

N

⌋
≤

⌊
ν + L− 1

N

⌋
≤

⌊
L

N

⌋
+ 1. (56)

It follows that the number of factors � ν+L−1
N � can be equal

to � L
N � or to � L

N � + 1. For given N and L, it depends on ν.
The function ν �→ � ν+L−1

N � is increasing, for this reason there
exists a boundary value of change-point ν∗ switching the number
of factors from � L

N � to � L
N � + 1. Let us define the following

equation for the number of factors:⌊
ν + L− 1

N

⌋
=

{ � L
N � if 1 ≤ ν ≤ ν∗

� L
N � + 1 if ν∗ + 1 ≤ ν ≤ N

. (57)

Let us suppose that ν∗ = (� L
N � + 1)N − L. The validity of this

definition of ν∗ is established by simple direct calculation for
end points of the intervals. For example, let ν = ν∗. It is easy to
see that⌊
ν∗ + L− 1

N

⌋
=

⌊
(�L/N� + 1)N − L+ L− 1

N

⌋
=

⌊
L

N

⌋
.

(58)
Another end point is ν = ν∗ + 1⌊
ν∗ + 1 + L− 1

N

⌋
=

⌊
(�L/N� + 1)N − L+ 1 + L− 1

N

⌋
=

⌊
L

N

⌋
+ 1. (59)

Putting together (11), (54) and (57), we get the product

A(ν,N, h)

=

{
Pν(Sν

1 < h)[G1(N,h)]� L
N �−1 if 1 ≤ ν ≤ ν∗

P ν(Sν
1 < h)[G1(N,h)]� L

N � if ν∗ + 1 ≤ ν ≤ N
.

(60)

The worst-case PMD Pmd(TFSS;N,h) (13) – (14) of the FSS
test follows from (54) and (60) thus completing the proof of
Theorem 2.

APPENDIX C
PROOF OF COROLLARY 2

First, we prove the PMD (20) of the transition block. Let us
consider the observations {yn}1≤n≤N governed by the proba-
bility measure Pν :

yn ∼
{
N (

0, σ2
)

if 1 ≤ n ≤ ν − 1
N (

θ, σ2
)

if ν ≤ n ≤ N
. (61)

As it follows from (61), the first ν − 1 pre-change observations
obeyN (0, σ2) and the lastN − ν + 1 post-change observations
obey N (θ, σ2). Hence, the LLR Sν

1 = θ
σ2

∑N
i=1(yi − θ

2 ) obeys
the Gaussian distribution

Sν
1 ∼ N (μν , N�), (62)

where � = θ2/σ2 is the SNR and

μν = −(ν − 1)�/2 + (N − ν + 1)�/2 = (N/2 − ν + 1)�.

Therefore, we prove (20)

γ1(ν,N, h) = Pν(Sν
1 < h) = Φ

(
h− μν√
�N

)
= Φ

(
h+ (ν −N/2 − 1)�√

�N

)
. (63)

Formula (21) corresponds to the block filled in only with
the post-change observations yn ∼ N (θ, σ2) for 1 ≤ n ≤ N .
Hence, G1(N,h) in (21) follows immediately from (63) when
ν = 1, i.e., G1(N,h) = γ1(1, N, h).

Finally, let us prove the last assertion of Corollary 2 given by
(22). It follows from (13) – (14) that

Pmd(TFSS;N,h) = max
1≤ν≤N

A(ν,N, h)

= max
{

max
1≤ν≤ν∗ {γ1(ν,N, h)} · γ2(N,h),

max
ν∗+1≤ν≤N

{γ1(ν,N, h)} · γ2(N,h) ·G1(N,h)
}
.

(64)

The function x �→ Φ(x) is increasing and hence ν �→
γ1(ν,N, h) (20) is also an increasing function of ν and its
minimum in the interval [1, N ] is reached at ν = 1. Taking into
account that maxν∗+1≤ν≤N{γ1(ν,N, h)} < 1, we get

max
1≤ν≤ν∗ {γ1(ν,N, h)} > max

ν∗+1≤ν≤N
{γ1(ν,N, h)} ·G1(N,h).

(65)
The worst-case PMD Pmd(TFSS;N,h) (13) – (14) of the FSS
test is given by

Pmd(TFSS;N,h) = max
1≤ν≤N

A(ν,N, h)

= max
1≤ν≤ν∗ {γ1(ν,N, h)} γ2(N,h) = γ1(ν∗, N, h)γ2(N,h)

(66)

thus completing the proof of Corollary 2.

APPENDIX D
PROOF OF THEOREM 3

The proof of Theorem 3 is divided in four parts. Parts 1–3 are
devoted to the case of L = 2n and Part 4 adapts the previously
obtained results to the case of L = 2n+ 1.

Part 1: Let the required time-to-alertL be an even number, i.e.
L = 2n,n ∈ Z

+ andTFSS ∈ Cα. As it follows from Corollary 1,
the worst-case PMD is given by

Pmd(TFSS;N) = γ1(ν∗, N)γ2(N), (67)

where

γ1(ν,N) = Φ
[
Φ−1

(
β

1

	mα
N 


)
− (N − ν + 1)√�√

N

]
(68)
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γ2(N)=
(

Φ
[
Φ−1

(
β

1

	mα
N 


)
−
√
�N

])� L
N �−1

, β=1−α
(69)

for any fixedα : 0 < α < 1 (we omitα to simplify the notation).
Let us divide the interval [1, 2n] of possible values of N

into two disjoint subintervals: [1, n] and [n+ 1, 2n]. First, we
consider the interval [1, n]. We cannot establish a simple rela-
tion between ν∗, N and L. From the other hand, the function
x �→ Φ(x) is increasing and hence γ1(ν,N) (68) is also an
increasing function of ν and its maximum in the interval [1, N ]
is reached at ν = N . Therefore,

Pmd(TFSS;N) ≤ γ1(N,N)γ2(N) ≤ γ2(N) (70)

over the interval [1, n]. Moreover, for any given constantsN,mα

and �, the following limit can be established for the first term

lim
β→1−

γ1(N,N, β) = lim
β→1−

Φ
[
Φ−1

(
β

1

	mα
N 


)
−

√
�√
N

]
= 1. (71)

Hence, an asymptotically sharp upper bound can be expected
for Pmd(TFSS) in the interval [1, n] as β → 1−.

Let us consider the interval [n+ 1, 2n]. As it follows from
the definition (69), the second term is γ2(N) = 1 when N ∈
[n+ 1, 2n]. Therefore,

Pmd(TFSS;N) = γ1(ν∗, N) (72)

over the interval [n+ 1, 2n]. Therefore, the first assertion (24)
of Theorem 3 follows immediately from (70) and (72):

γ(N) =

{
γ1(N,N)γ2(N) if 1 ≤ N ≤ n

γ1(ν∗, N) if n+ 1 ≤ N ≤ 2n
. (73)

Because L = 2n is an even number, the block size is given
by N = n+ k, where k ∈ {1, 2, . . . , n}. Next, we get ν∗ =
(� L

N � + 1)N − L = 2k and hence (68) can be re-written as a
function of k ∈ {1, . . . , n}

γ1(k) = Φ
[
Φ−1

(
β

1

	 mα
n+k


)
− (n− k + 1)√�√

n+ k

]
. (74)

Part 2: In the sequel an upper bound for γi is denoted by
γi, i = 1, 2. Let us show that the upper bound N �→ γ2(N) is
a decreasing function in the interval [1, n], when L = 2n. It is
easy to see that⌊

L

N

⌋
− 1 ≥ max

{
L

N
− 2, 1

}
for 1 ≤ N ≤ n (75)

and ⌈mα

N

⌉
≤ mα

N
+ 1 (76)

Therefore, taking into account that the functions x �→ Φ(x) and
x �→ Φ−1(x) are increasing, β = 1 − α < 1 and Φ(x) < 1, we
get the following upper bound for γ2(N)

γ2(N) ≤ γ2(N)

=
{

Φ
[
Φ−1

(
β

1
mα
N

+1

)
−
√
�N

]}max{ L
N −2,1}

. (77)

Let N = Lx. The upper bound γ2(N) can be re-written as a
function of x:

γ2(x) =
{

Φ
(

Φ−1
(
β

xL
mα+xL

)
−
√
�Lx

)}max{ 1
x−2,1}

(78)

for x ∈ [1/L; 1/2]. Our goal is to show that the function x �→
γ2(x) is decreasing over the interval [1/L; 1/2] beginning from
a sufficiently small α0 > 0 (or beginning from β0 = 1 − α0

close to 1). Let us change the variable x to y = xL
mα+xL for

y ∈ [ 1
mα+1 ,

L
L+2mα

]. This leads to the following differentiable
piecewise-defined function of class C1

γ2(y) =
{

Φ
[
Φ−1 (βy) −

√
�mαy

1 − y

]}g(y)

, (79)

where g(y) = max{ L
ymα

− L
mα

− 2, 1}. Let us re-write (79) as
follows

γ2(y) = f(y)g(y), (80)

where f(y) = Φ(Φ−1(βy) −
√


mαy
1−y ). The derivative of

γ2(y) is

d γ2(y)
dy

= f(y)g(y)
[
g′y(y) log f(y) +

g(y)f ′y(y)
f(y)

]
. (81)

First, we compute the derivative over the interval
[ 1
mα+1 ,

L
L+3mα

]. The function g over this interval is given

by g(y) = L
ymα

− L
mα

− 2. The derivatives of the functions f
and g are given as follows

f ′y(y) = ϕ

(
Φ−1 (βy) −

√
�mαy

1 − y

)

·
[

βy log β
ϕ [Φ−1 (βy)]

−
√
�mα

2
√
y(1 − y)3

]
, (82)

where ϕ(x) = (1/
√

2π) exp{−x2/2} denotes the PDF of the
standard normal distribution,

g′y(y) = − L

mαy2
. (83)

By the definition of the CDF Φ(x), the first factor f(y)g(y) in
(81) is positive. Hence, the sign of the derivative dγ2(y)

dy is defined
by two terms inside brackets in (81). We are interested in the
asymptotic analysis when α→ 0+ or β = 1 − α→ 1−. Let us
define the two terms inside brackets in (81) as functions of β
and y:

h1(β; y) = g′y(y) log f(β; y) and h2(β; y) =
g(y)f ′y(β; y)
f(β; y)

.

(84)
Because log Φ(x) < 0 ∀x ∈ IR, the first term inside brackets is
positiveh1(β; y) = g′(y) log f(β; y) > 0. After simple algebra,
we get

h1(β; y) ∼ − L

mαy2
log βy as β → 1− (85)
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for all y in the closed interval [ 1
mα+1 ,

L
L+3mα

]. The second term
h2 becomes negative as β → 1−:

h2(β; y) ∼ −
√
�mα

2
√
y(1 − y)3

· ϕ
(

Φ−1 (βy) −
√
�mαy

1 − y

)

·
(

L

ymα
− L

mα
− 2

)
(86)

for all y in the closed interval [ 1
mα+1 ,

L
L+3mα

]. Finally, let us
establish that h1(β; y) = o(h2(β; y)) as β → 1−. By using the
L’Hôpital’s rule, we get

lim
β→1−

h1(β; y)
h2(β; y)

= lim
β→1−

h′β,1(β; y)
h′β,2(β; y)

= 0. (87)

for all y in the closed interval [ 1
mα+1 ,

L
L+3mα

].
Second, we compute the derivative over the interval

[ L
L+3mα

, L
L+2mα

]. The function y �→ g(y) over this interval is
equal to 1. Hence,

d γ2(y)
dy

∼ −
√
�mα

2
√
y(1 − y)3

ϕ

(
Φ−1 (βy) −

√
�mαy

1 − y

)
(88)

as β → 1− for all y in the closed interval [ 1
mα+1 ,

L
L+3mα

].
Hence,∃α0 > 0 such that for allα ≤ α0 the functionx �→ γ2(x)
is decreasing over the interval [1/L; 1/2].

Part 3: Let us show that the upper bound N �→ γ1(ν∗, N)
is an increasing function in the interval [n+ 1, 2n], or (it is
equivalent to) that the function k �→ γ1(k), where γ1(k) is given
by (74), is an increasing function in the interval [1, n]. By using
the inequality (76), we get an upper bound for γ1(x):

γ1(x) < γ1(x) = Φ
[
Φ−1

(
β

n+x
mα+n+x

)
− (n− x+ 1)√�√

n+ x

]
,

(89)
where x ∈ [1, n], x ∈ IR. The derivative of γ1(x) is

d γ1(x)
dx

= ϕ

(
Φ−1

(
β

n+x
mα+n+x

)
− (n− x+ 1)√�√

n+ x

)

·
⎡⎣ mαβ

n+x
mα+n+x log β

ϕ
[
Φ−1

(
β

n+x
mα+n+x

)]
(mα + n+ x)2

+
(3n+ x+ 1)√�

2(n+ x)3/2

⎤⎦ .
(90)

By the definition of the PDF ϕ(x), the first factor in (90) is
positive. Hence, the sign of the derivative dγ1(x)

dx is defined
by two terms inside brackets in (90). We are interested in
the asymptotic analysis when β = 1 − α→ 1−. The first term
inside brackets in (90) is a function of β and x. Exactly in the
same way as previously in Part 2 (see (85)), it can be shown
that this term tends to 0− as β → 1− for any x ∈ [n+ 1, 2n].
The second term is not a function of β and it is positive for any
x ∈ [1, n]. Hence, ∃α0 > 0 such that for allα ≤ α0 the function
x �→ γ1(x) is increasing in the interval [1, n].

Finally, to conclude with the case of L = 2n, it is necessary
to “glue” both functions N �→ γ1(N) and N �→ γ2(N) and to
show that

γ2(n) = Φ
[
Φ−1

(
β

n
mα+n

)
−√

�n
]

� γ1(1) = Φ
[
Φ−1

(
β

n+1
mα+n+1

)
−

√
n√

n+ 1
√
�n

]
(91)

as β =→ 1−. To prove inequality (91), let us recall that x �→
Φ(x) is an increasing function. Due to the fact that β

n
mα+n ∼

β
n+1

mα+n+1 as β =→ 1−, the first terms inside brackets in (91)
are equivalent. The second terms inside brackets in (91) are not
functions of β, hence these terms define the relation between
γ2(n) and γ1(1). The validity of inequality (91) follows from
the inequality

√
n√

n+1
< 1. Finally, it can be deduced from (91)

that an upper bound for γ(N) (73), composed of two parts,
asymptotically attains its minimum at the right end pointN = n
of the interval [1, n]. This proves the asymptotically optimal
solution given by equations (27) – (28) in the case of L = 2n.

Part 4: Let the required time-to-alertL be an odd number, i.e.
L = 2n+ 1, n ∈ Z

+ and TFSS ∈ Cα. The proof is organized in
the same way as forL = 2n (see Parts 1 – 3), the only difference
is how to “glue” the upper bounds N �→ γ2(N) and N �→
γ1(N) defined in the subintervals: [1, n] and [n+ 1, 2n+ 1],
respectively. The bound N �→ γ2(N) is defined as previously.
Let us consider the bound x �→ γ1(x) in the interval [1, n+ 1].
Now, γ1(x) is slightly different from (89), (n− x+ 1) in the
second term between the brackets is replaced with (n− x+ 2):

γ1(x) = Φ
[
Φ−1

(
β

n+x
mα+n+x

)
− (n− x+ 2)√�√

n+ x

]
, (92)

where x ∈ [1, n+ 1], x ∈ IR. The proof of Part 3 is completely
applicable to the case of L = 2n+ 1. Hence, the function x �→
γ1(x) is also increasing in the interval [1, n+ 1]. Nevertheless,
in contrast to inequality (91), we get from (88) that

γ2(n) = Φ
[
Φ−1

(
β

n
mα+n

)
−√

�n
]

� γ1(1) = Φ
[
Φ−1

(
β

n+1
mα+n+1

)
−
√
�(n+ 1)

]
(93)

as β → 1−. It can be deduced from (93) that the upper bound
γ(N) (73), composed of two parts, asymptotically attains its
minimum at the left end point N = n+ 1 of the interval
[n+ 1, 2n+ 1]. This proves the asymptotically optimal solution
given by equations (27)–(28) in the case of L = 2n+ 1.
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