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Abstract—Traffic awareness is the prerequisite of autonomous
driving. Given the limitation of on-board sensors (e.g., precision
and price), remote measurement from either infrastructure or
other vehicles can improve traffic safety. However, the wireless
communication carrying the measurement result undergoes fad-
ing, noise and interference and has a certain probability of out-
age. When the communication fails, the vehicle state can only
be predicted by Bayesian filtering with a low precision. Higher
communication resource utilization (e.g., transmission power) re-
duces the outage probability and hence results in an improved
estimation precision. The power control subject to an estimate
variance constraint is a difficult problem due to the complicated
mapping from transmit power to vehicle-state estimate variance.
In this paper, we develop an estimator consisting of several Kalman
filters (KFs) or extended Kalman filters (EKFs) and an interacting
multiple model (IMM) to estimate and predict the vehicle state.
We propose to apply deep reinforcement learning (DRL) for the
transmit power optimization. In particular, we consider an inter-
section and a lane-changing scenario and apply proximal policy
optimization (PPO) and soft actor-critic (SAC) to train the DRL
model. Testing results show satisfactory power control strategies
confining estimate variances below given threshold. SAC achieves
higher performance compared to PPO.

Index Terms—Autonomous driving, bayesian filtering, interac
ting multiple model, resource allocation, power control, deep
reinforcement learning, proximal policy optimization, soft actor-
critic.
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I. INTRODUCTION

AWARENESS of the traffic state (i.e., positions and ve-
locities of surrounding vehicles) is the prerequisite for

autonomous driving [1], which is usually enabled by either
onboard sensors of vehicles or sensors on a road-side unit
(RSU) as infrastructure. However, they are inherently limited
by measurement accuracy, cost, and range. For example, radar
and camera in bad weather have high measurement noise. Lidar
provides a high measurement accuracy but the cost limits its
application. Besides, onboard sensors are often blocked by
surrounding vehicles and cannot measure vehicles behind the
blockage. These problems can be solved to a large extent by
remote measurement and vehicular communication, where ve-
hicles or RSU transmit the estimated traffic state to other vehicles
with wireless communication [2]. In this way, a high-cost Lidar
can be equipped on an RSU, which broadcasts the traffic state
to all nearby vehicles. The RSU can be installed on a high place
(such as on the traffic light) and a vehicle can transmit the traffic
state estimates (either of itself or of adjacent vehicles) obtained
by its own sensors to other vehicles. In this way, problems of
unfavorable sensing conditions, e.g., blockage, can be relieved.
Furthermore, the received estimates from the RSU can also
be combined with measurements by the on-board sensors (if
available) for better precision or richer details.

However, the wireless communication cannot be assumed
always reliable. When the communication fails, the traffic state
can only be predicted using previous estimates. Besides, the
inherent measurement noise is also a constraint that needs to
be addressed. Due to the relatively tractable dynamics of traffic
state, the Bayesian filter is widely applied for state estimation
and prediction. In particular, Kalman filter (KF) and extended
Kalman filter (EKF) are popular because of the optimality of the
KF given a linear system dynamics and a good compromise be-
tween complexity and performance of the EKF given a nonlinear
system dynamics.

Bayesian inference, remote estimation and corresponding
communication scheduling have been widely studied for var-
ious applications. For example, the Cramér-Rao lower bound
(CRLB) was derived in the vehicular context in [3]. The vehicle
movement is modeled with Bayesian approaches in [4]–[6].
The problem of estimation over lossy network is addressed
in [7]–[9]. Communication scheduling is optimized for Bayesian
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inference with remote measurement in [10]–[16]. Distributed
sensor fusion over lossy channels is discussed in [17], [18]. As
a relevant topic, the metrics age of information (AoI) and value
of information (VoI) are optimized in [19]–[23]. In these works,
the estimation with irregular measurements has been well dis-
cussed but the lossy communication network is either assumed
given (e.g., [7]–[9], [17], [18]) or the optimization is naive and
empirical (e.g., [10]–[13]) or is derived for simple scenarios
and the solution is given as a closed-form solution [14], [15].
For nonstationary vehicular environment, an empirical solution
might be highly suboptimal and an analytical solution is difficult
or impossible to obtain. To the best of our knowledge, the above-
mentioned problem in a complicated nonstationary environment
remains open. Machine learning is a suitable tool to handle such
extremely difficult problems. Machine learning has been widely
applied for communication system optimization [24]. Since
we consider an optimization problem in a dynamic process,
the communication in current time step impacts the estimation
precision not only in current time step, but also in time steps
in near future, the DRL [25] is a good candidate as a solution.
It optimizes a sequence of actions in a dynamic environment
such that the sum of rewards over time is maximized. In recent
years, DRL has been applied to resource allocation [26]–[29],
signal processing [30], [31] and has achieved good results when
an analytical approach is impossible.

In this paper, we present a traffic state estimator in nonstation-
ary traffic environments with remote source, we formulate the
problem of transmission power control optimization, we define
the corresponding reinforcement learning (RL) environment,
and finally we train a policy with state-of-the-art DRL algo-
rithms. This paper in also an early contribution to realize the
vision of semantic communication [32], which does not only
optimize the communication performance (e.g., data rate, delay
and outage probability), but also considers the utility tasks of
the receiver (i.e., vehicles near the RSU) brought by the received
information (i.e., estimation precision in our application). This
is a difficult problem because it requires the interdisciplinary
consideration of both communication and estimation, and its
formulation is usually too complicated to solve analytically. In
recent years, the semantic communication has been considered
in a Bayesian game in [33]. Network optimization based on
value of information has been considered in [34]. Joint commu-
nication, computation, caching and control for edge computation
has been studied in [35]. To the authors’ best knowledge, joint
consideration of estimation and communication in context of
transportation safety and automation is still an open problem.
This is the objective of this paper. Our specific contributions
are:

1) We extend the standard KF, EKF and IMM to cases with
and without measurements. If measurements are available,
the standard filtering (predicting and updating) is applied.
If measurements are not available due to failed communi-
cation, we do predictions until measurement is available
again.

2) We develop a problem formulation to minimize radio
resource utilization while keeping the expected estimation
precision at the other vehicles better than a threshold

without feedback from them. Resource allocation without
feedback is advantageous because of two reasons: firstly,
it entails lower communication load since no feedback is
required; and secondly, similar to the transmission from
the RSU to the receivers, the feedback is not always
reliable either and resource allocation without feedback
has to be addressed anyway. Assuming the unfavorable
Rayleigh fading channel, the worst case is considered
without knowledge of the actual channels to the receivers.

3) We use the posterior estimates to simplify the problem
formulation, which considers all possibilities (whether
the transmissions are successful or not, called histories
later in the paper) at the receivers, whose probabilities are
determined by the transmit powers in the past. By trans-
mitting posterior estimates instead of raw measurements,
the number possible histories is greatly reduced from 2T to
T where T is the total number of time steps. The problem
becomes then feasible.

4) We apply the state-of-the-art DRL algorithms PPO and
SAC to solve the problem, which are able to minimize
the sum of transmit powers while keeping the estimation
precision above a given level. We show that even with
the worst case assumption of Rayleigh fading channels,
the sum of transmit powers computed with the DRL al-
gorithms is still significantly lower than constant transmit
powers.

The remaining part of the paper is structured as follows:
Section II formulates the problem, Section III describes the
communication model, Section IV explains the involved RL
techniques and defines the RL environment. Training and eval-
uation results will be presented in Section V and the conclusion
will be drawn in Section VI.

Notation: Throughout this paper we use the following no-
tations: N (μ,Σ) denotes the Gaussian distribution with ex-
pectation μ and covariance matrix Σ. (·)T denotes the trans-
pose operator. N (z;μ,σ2) denotes the probability density of z
given Gaussian distribution N (μ,Σ). E(·) denotes the expec-
tation operator. DKL(A||B) denotes the Kullback-Leibler (KL)-
divergence between distributions A and B. Indicator function
I(c) is 1 if condition c is true and 0 otherwise. N (z;μ,σ2)
denotes the probability density at z given the normal distri-
bution with expectation μ and variance σ2, N (z;μ,σσσ2) =
exp(− 1

2 (z− μ)Tσ−2(z− μ))/
√

(2π)k|σ|2, where k is the di-
mension of z.

II. MODEL AND PROBLEM FORMULATION

The vehicle state and its predictability depend on the environ-
ment. In this study, we consider two typical traffic environments
with varying vehicle state dynamics and therefore challenging
predictability: an intersection and a multi-lane highway, as
shown in Fig. 1. In the intersection, the vehicle uses the rightmost
lane and can either go straight or turn right. On the highway, the
vehicle is initially on the middle lane and can either keep the lane
or change to left or right lane at any location. Since the vehicles
are not controlled by the RSU, which measures the vehicle states,
controlling inputs [36, eq. (1.1)] are neglected and the different

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on May 07,2022 at 10:01:49 UTC from IEEE Xplore.  Restrictions apply. 



PENG et al.: COMMUNICATION SCHEDULING BY DEEP REINFORCEMENT LEARNING FOR REMOTE TRAFFIC STATE ESTIMATION 4289

Fig. 1. Considered scenarios. In the intersection scenario, a vehicle (yellow) on
the rightmost lane can either go straight or turn right. In the multi-lane highway
scenario, a vehicle (yellow) on the middle lane can keep lane, change to the
left or right lane at any place. The RSU measures and estimates the state of the
yellow vehicle and transmits it to the adjacent traffic participants (gray) who are
interested in the state of the yellow vehicle.

possible driving maneuvers are modeled by the IMM available
at both RSU and receiving vehicles, as will be described in the
next section. Vehicles are not assumed to have any sensors.

We consider one vehicle of this paper. Estimating states of
multiple vehicles can be done with multiple target tracking [37]
and communication of multiple vehicles’ state estimates can be
done using different resource blocks. Joint scheduling and esti-
mation optimization of multiple vehicles is therefore a straight-
forward extension of the current paper.

A. Vehicle Dynamics

Below we describe the vehicle dynamics, as modeled at the
RSU or the vehicles. We define the vehicle state at time step t as
xt = (px,t, py,t, vx,t, vy,t)with (px,t, py,t) and (vx,t, vy,t)being
position and velocity of the vehicle at time step t, respectively,
where x is the coordinate in direction from west to east and y is
the coordinate in direction from south to north. In general, the
vehicle dynamics is described by

xt = f(xt−1) +wt, (1)

where f is a general nonlinear function of system dynamics re-
flecting possible driving maneuvers, e.g., straight driving, accel-
erating, decelerating or turning, wt ∼ N (0,N) is the inherent
randomness of the process and is assumed normally distributed
with expectation0 and covariance matrixN. In the following we
choose straight driving and turning as two examples of f . It is to
note that the set of system dynamics models can be generalized
to include other possible driving behaviors.

1) Straight Driving: Given the state xt−1 at time step t−
1 and assuming the vehicle is going straight with a constant
velocity, the state xt at time step t is

xt = Fxt−1 +wt, (2)

where F is a linear state-transition matrix as a concrete realiza-
tion of f in (1), which is defined as

F =

⎛
⎜⎜⎝

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

whereΔt is the time difference between two adjacent time steps.
2) Turning: When the vehicle is turning with velocity direc-

tion change of Δθ between time step t− 1 and time step t, the
state-transition function is nonlinear and the velocity at time step
t is

vx,t = vx,t−1 cos(Δθ)− vy,t−1 sin(Δθ) + wvx,t (3)

vy,t = vx,t−1 sin(Δθ) + vy,t−1 cos(Δθ) + wvy,t (4)

where (wvx,t, wvy,t)
T ∼ N (0,Nv) is the normally distributed

perturbation of velocity with expectation 0 and covariance ma-
trix Nv . The position at time step t is(

px,t
py,t

)
=

(
px,t−1

py,t−1

)
+Δt ·

(
vx,t
vy,t

)
+wp,t, (5)

where wp,t ∼ N (0,Np) is the normally distributed perturba-
tion of position with expectation0 and covariance matrixNp.1 If
the vehicle turns right, we only need to setΔθ to a negative value.
In the intersection scenario, the vehicles either goes straight all
the time or goes straight and turns right in the intersection by
90 ◦ and goes straight again. In the lane changing scenario, the
vehicle either goes straight all the time, or first turns left and then
turns right (to change to the left lane), or first turns right and then
turns left (to change to the right lane) at a random position.

B. Sensing Model

We consider sensing of the vehicle state at the RSU. Assuming
a general nonlinear measurement model, the measurement at
time t is

zt = h(xt) + vt, (6)

where h is the measurement model and vt ∼ N (0,Rt) is the
normally distributed measurement noise, with Rt being the
covariance matrix of measurement noise at time step t. Based
on these measurements, the RSU runs a tracking method. In
this work, we apply KF, EKF and IMM for this purpose. Their
standard formulation is briefly presented in the appendices. The
IMM which provides the current state estimate x̂IMM

t with the
associated covariancePIMM

t . The block diagram of the estimator
in one time step is shown in Fig. 2. The model probabilities
{μi

t|t}Ni=1, state estimates {x̂i
t|t}Ni=1 and covariance matrices

{Pi
t|t}Ni=1 (i.e., the input of Fig. 2(a)) are transmitted from RSU

to adjacent traffic participants after the estimation, where N
is the number of models in IMM. Note that the estimator can
operate both with and without measurements. In the latter case,
which will be relevant to the vehicle receiver, we perform an
open loop prediction, which is equivalent to assuming an infinite
measurement noise variance.

C. Communication and Information Model

The RSU computes the posterior estimate of the vehicle state
and broadcasts it via wireless communication. The receiving

1Note that we apply the discrete EKF [36], which assumes constant velocity
in a time step. In reality, this velocity can be the mean velocity in the time step
such that the error caused by the approximation is minimized.
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Fig. 2. Block diagram of IMM in one time step. At the beginning of each time step, the mixing probabilities are computed with (35) (block “mixing probability
calculation”). The mixed state estimates and estimate variances are computed with (36) and (37), respectively, for each model (block “mixing”). After that, prediction
and prior variance are computed with (27) and (28), or (33) and (34), respectively, depending on whether KF or EKF is applied (block “model n: prediction”).
If measurement is available, the estimates and the variances are updated with the measurement with (29) and (32), respectively, for each model (block “model
n: update”). The model probabilities are updated with (39) or (38), for cases without and with measurement (block “model probability calculation”). Finally, the
output estimate and variance of IMM is computed with (40) and (41), respectively (block “output estimate”). This figure is based on Fig. 1 in [38], which only
considers IMM with measurement. (a) Without measurement (for receiving vehicles to predict state without measurement if communication fails and for RSU to
estimate the estimation variance of receiving vehicles which experience communication failure). (b) With measurement (for RSU to estimate the target vehicle’s
state).

vehicle do not measure the target vehicle’s state but can do pre-
diction without measurement (i.e., without (29) and (32)) if the
transmission of RSU’s estimate fails. Hence, both the vehicle and
the RSU run tracking methods with different information models

1) Receiving vehicle is equipped with an estimator without
updating with measurement, which is shown in Fig. 2(a). It
does not do measurement but knows the history of success-
ful transmissionsht = (c0, c1, . . . , ct), where ck ∈ {0, 1}
indicates whether or not a downlink packet was received.
The estimation is done with measurement if the transmis-
sion is successful or as open loop prediction otherwise.
Therefore, the estimate at the vehicle of the state at time
t x̂IMM

t and the associated covariance PIMM
t depend on

ht and are therefore denoted as x̂IMM
t (ht) and PIMM

t (ht),
respectively.

2) RSU has access to all measurements and runs multiple
estimators (Fig. 2(a) and 2(b)) with all possible histo-
ries to estimate all possible PIMM

t (ht) at the receivers.

Besides, the RSU also estimates the probabilities of the
histories with its transmit powers based on the worst
case fading channel assumption with the highest com-
munication outage probability. Because history ht de-
pends on the transmit power (P1, . . . , Pt) where Pt is
the transmit power at time step t, we denote the history
as ht(P1, . . . , Pt). In this way, it can compute the upper
bound of Eht

(PIMM
t (ht(P1, . . . , Pt))) without feedback

from the vehicles because Eht
(PIMM

t (ht)) is an increasing
function of the outage probability.

The process described above is illustrated in Fig. 3.

D. Problem Statement

As was described, if the transmission is successful, the vehicle
receives an estimate with a high precision, otherwise it can only
predict the current state with a lower precision. In some cases
(e.g., when the vehicle goes straight outside the intersection),
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Fig. 3. Work flows of receiving vehicles and the RSU.

its state is relatively predictable and it is expected that the
transmission power can be kept low. The state becomes highly
unpredictable when the vehicle is in the intersection without an
unambiguous trend whether it is going straight or turning right
(in the first scenario) and the vehicle changes lane (in the second
scenario). Our objective is to optimize the communication, such
that the expected estimate variance at the receiving vehicles is
below a given threshold to ensure a certain safety level while
minimizing the sum of transmit powers. The problem can be
formulated as

min
P1,...,PT

T∑
t=1

Pt

s.t. tr
(
Eht

(
PIMM

t (ht(P1, . . . , Pt))
))

< pth, (7)

where Pt is the transmit power at time step t, T is the horizon
(i.e., the maximum time step where the vehicle is in the respon-
sible range of the RSU) and pth is the threshold that should not
be violated. The complicated relation betweenPt andPIMM

t will
be presented in Section III.

III. TRANSMISSION IN UNRELIABLE CHANNEL AND

CONSIDERATION OF MULTIPLE HISTORIES

A. Transmission in an Unreliable Fading Channel

We assume vehicles with autonomous driving or driving assis-
tance systems are able to use the IMM estimator to predict and es-
timate states of surrounding vehicles with estimates transmitted
from the RSU (i.e., outputs of Fig. 2). The transmission is over a
fading channel and the channel capacity is a random variable
depending on the channel gain. Therefore, there is a certain
outage probability (i.e., the probability that the transmission
fails), which is computed as

pout
t = P

(
R > W log2

(
1 +

|g|2Pt

WN0

))

= Fg

⎛
⎝
√(

2R/W − 1
)
WN0

Pt

⎞
⎠ , (8)

where g is the randomly distributed channel gain, Fg is the
cumulative distribution function (CDF) of random variable g, R
is the required data rate and W is the bandwidth (both assumed
to be constant for simplicity), Pt is the transmission power, N0

is the noise power spectrum density per Hertz.
If Fg is a monotonically increasing function (which is usually

this case with conventional distributions of fading channels),
when we increase Pt, pout

t will decrease and the traffic partici-
pants have a higher probability to receive the posterior estimate,
which leads to a lower estimate variance. Until now we have
completed the description of relationship between Pt andPIMM

t .
The choice of the distribution and the associated parameters

should be determined by on-site measurement and reflect the
worst case in the area of the RSU’s responsibility, i.e., the actual
outage probability at any position in the area of the RSU’s
responsibility cannot be higher than pout

t computed in (8).

B. Consideration of Multiple Histories

Problem (7) requires the expectation of PIMM
t . From the

above sections we know that x̂IMM
t and PIMM

t depend on which
measurements are available and are denoted as x̂IMM

t (h
(i)
t ) and

PIMM
t (h

(i)
t ), respectively, where i is the index of the possible

history. The probability of h(i)
t is

p
(
h
(i)
t

)
=

t∏
k=0

((
1 − pout

k

)
c
(i)
k + pout

k

(
1 − c

(i)
k

))
, (9)

the expectation of x̂IMM
t is

E
h

(i)
t

(
x̂IMM
t

)
=
∑
i

x̂IMM
t

(
h
(i)
t

)
p
(
h
(i)
t

)
(10)
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and the expectation of PIMM
t is

E
h

(i)
t

(
PIMM

t

)
=
∑
i

PIMM
t

(
h
(i)
t

)
p
(
h
(i)
t

)
. (11)

If we have T time steps in total, there would be 2T possible
histories, which is an enormous number given an ordinaryT , say,
60 - 70 in our scenarios. However, the RSU can do the estimation
with all measurements in the past (because the RSU always
has all the measurements) and transmits the estimates (i.e.,
{μi

t|t, x̂
1
t|t,P

1
t|t}Ni=1) to the receiving vehicles. If the transmission

is successful (i.e., c(i)t = 1), the previous history h
(i)
t−1 does not

impact the estimate because the transmitted estimate is based on
all measurements in the past. Only when the transmission fails,
the receiving vehicles needs to estimate (predict) the current state
with methods described above. Therefore, if the RSU transmits
the estimates instead of the raw measurements, what matters is
only the last time when the transmission was successful. In this
case, we have

p
(
h
(−K)
t

)
=
(
1 − pout

t−K−1

) t∏
k=t−K

pout
k , (12)

instead of (9), where h
(−K)
t is the history that the previous K

transmissions fail and the last successful transmission was at
time step t−K − 1. Hence, the number of possible histories
reduces from 2T to T (which is a considerable complexity
reduction). The expectation of PIMM

t is computed with (11) as
before.

Another advantage of transmitting estimates instead of raw
measurements is that the estimates have higher precision than the
measurements and the receiving vehicles do not have to carry out
the estimation themselves. Instead, the estimation is done only
once at the RSU. The overall computational effort is therefore
reduced. Besides, RSUs often have fixed power supply and are
less energy-sensitive compared to vehicles, which usually run
computations on batteries.

IV. TRANSMIT POWER CONTROL WITH DEEP

REINFORCEMENT LEARNING

The model-free DRL algorithms can be roughly classified into
off-policy algorithms in style of Q-learning and on-policy policy
optimization algorithms, with SAC and PPO as the state-of-the-
art representatives in each category, respectively. In addition, the
on-policy algorithms require an external advantage estimator,
where the generalized advantage estimation (GAE) is widely
applied. In this section, we first introduce some fundamental
definitions in DRL and then describe the above-mentioned al-
gorithms, which are later used to solve the proposed problem.

A. RL Problem Formulation and Fundamental Definitions

RL aims to optimize actions in a dynamic environment such
that the expected sum of rewards is maximized. As shown in
Fig. 4, in a time step t, an agent observes the environment state st,

Fig. 4. Framework of RL problems in one time step. The agent observes
the state of the environment st and makes a decision of the action at, which
determines a reward rt together with st and changes the environment state from
st to st+1 and this process starts over. The objective is to maximize the expected
sum of rewards.

and uses its policyπθ parameterized by θ to determine an action2

at, i.e.,at = πθ(st). The actionat changes the environment state
from st to st+1 with the system dynamics st+1 = f(st, at) and
determines the reward rt with the reward function rt = r(st, at).
The system dynamics function f and reward function r are given
in the problem formulation and the policy πθ is to be optimized.
Formally, the problem can be formulated as

max
θ

E

(
T∑
t=1

r(st, at)
∣∣∣s0

)

s.t.at = πθ(st)

rt = r(st, at)

st+1 = f(st, at). (13)

Note that the expectation operator is necessary because of the
inherent randomness of the considered problem: both system dy-
namicsf(s, a) and policyπ(s)might be stochastic. For example,
the driving behavior (going straight or turning) is unknown in
advance, which causes randomness in system dynamics. The
stochastic policy is widely used by modern RL algorithms,
which returns a distribution of action parameterized by state s
rather than a deterministic action, which results in randomness
in policy.

In our problem, we define state, action and reward as follows:
1) The state should contain sufficient information to make

the optimal decision of the transmission power and is
defined as

st =

(
zt, tr

(
PIMM

t

)
, {μi

t−1}Ni=1, {μi
t}Ni=1,

N∑
i=1

μi
tỹt

)
.

(14)
In (14), zt is the estimated state at current time step, which
is an important information because the current state
determines the development in future to a large extent,
tr(PIMM

t ) is the trace of the covariance matrix of the IMM
estimate, which characterizes how accurate the estimate
zt is, {μi

t−1}Ni=1 and {μi
t}Ni=1 are the model probabilities

2In practice, a stochastic policy is usually preferred than deterministic policy,
where the output ofπθ is a distribution of action rather than the action itself (e.g.,
expectation and standard deviation of a Gaussian distribution for continuous
action space and categorical probabilities for discrete action space.). The actual
action is sampled from this distribution.
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in previous and current time steps, respectively. This in-
formation is important to the decision because the model
probabilities and their changes impact the predictability
significantly. Two examples are, 1) going straight is a much
more stable state than turning, 2) drastic change of state
probabilities cannot be explained by model probability
mixing (35), which means an update with measurement
is necessary for accurate prediction in future.

∑N
i=1 μ

i
tỹt

is the mean innovation weighted by the model probabil-
ities and is the measure of how prediction deviates from
measurement on average.

2) The action at time step t is the transmission power Pt. The
action space is therefore a one dimensional continuous
space in range (0, pmax) where pmax is the maximum
transmission power.

3) The reward at time step t is defined as

rt = − Pt − w1I(tr(PIMM
t ) > pth)

− w2 max(0, tr(PIMM
t )− pth), (15)

where w1 and w2 are coefficients of the penalty terms. The
first term is to encourage low transmission power. The second
term is to ensure tr(PIMM

t ) does not exceed pth by setting a steep
reward change at the threshold. The third term is to provide a
gradient towards the correct direction.

The choice of w1 and w2 is empirical and should meet the
following two criteria:

4) The values should be sufficiently large such that the agent
learns it should not save transmit power at the cost of
violating the precision constraint.

5) The values should not be unnecessarily large in order to
avoid numerical instability.

Note that the RL formulation (13) and the reward definition
(15) do not explicitly implement the constraint in (7). Instead,
it issues a penalty when the constraint is violated. When the
penalty is considerably higher than the saved transmit power
(the first term in (15)), the agent will learn not to save energy and
violate the constraint. This fact will be illustrated in Section V.

Three important terms of RL are value, Q-value and advan-
tage, which are briefly elaborated as follows:

6) The value function is defined as the expected discounted
sum of rewards beginning from the given state s and
following policy πθ, i.e.,

V πθ (s) = E

(
T∑
t=1

γtr(st, at)

∣∣∣∣∣s1 = s, at = πθ(st)

)
,

(16)
where γ ∈ [0, 1) is the discounting factor. The value func-
tion measures how good policy πθ is given state s.

7) The Q-value is defined as the expected discounted sum
of rewards beginning from the given state s and choosing
action a at the current time step, then following policy πθ,

i.e.,

Qπθ (s, a) = E

(
T∑
t=1

γtr(st, at)

∣∣∣∣∣s1 = s, a1 = a,

at = πθ(st) for t > 1

)
. (17)

For algorithms in Q-learning style, the Q-value is used to
determine the policy, e.g., πθ(s) = argmaxa Q

πθ (s, a).
For policy optimization algorithms, the difference between
value V πθ (s) and Q-value Qπθ (s, a) provides a compar-
ison between policy πθ and action a because the only
difference between value and Q-value is whether to choose
action at first time step according to policy πθ (value) or
using the given action a (Q-value).

8) The advantage function is defined as the difference between
Q-value and value:

Aπθ (s, a) = Qπθ (s, a)− V πθ (s). (18)

Intuitively, a positive advantage indicates action a is better
than the action return by the policy πθ(s) and we should
optimize the policy such that action a appears more often
given state s. The same holds true vice versa.

B. Proximal Policy Optimization and Generalized
Advantage Estimation

We briefly elaborate PPO and GAE in this section. The readers
are referred to [39] and [40] for more details.

PPO uses stochastic policy, i.e., the policy determines a dis-
tribution rather than a deterministic value of the action and the
actual action is sampled from the distribution. For continuous
actions (our case), we usually use the Gaussian distribution,
where the expectation is the output of the policy network
and the variance is a constant. In each iteration, data samples
{(st, at, rt, st+1)}t are collected with interaction with the envi-
ronment. The policy is updated in such a way, that probabilities
of actions with positive advantages are increased and probabil-
ities of actions with negative advantages are decreased, i.e., the
expectation given the state moves towards actions with positive
advantages and away from actions with negative advantages.
This can be realized with the following objective:

max
θ

∑
s,a

πθ(a|s)
πθold(a|s)

Aπθold . (19)

The policy optimization is subject to the constraint that the
KL-divergence between old and new distributions is smaller than
a threshold in order to avoid dramatic changes of policy and make
the training stable. Since the direct constraint optimization is
difficult (implemented by trust region policy optimization [41]),
a cleverly defined objective function is applied such that the
gradient is nonzero only when πθ(a|s)/πθold(a|s) is between
1 − ε and 1 + ε, where ε is a positive number controlling the
region size, in which the policy optimization can be performed.

The advantage is estimated with the GAE, which realizes an
optimal bias-variance trade-off. Using the Bellman equation, the
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Q-value can be expressed as

Aπθ (st, at) = −V πθ (st) +

I−1∑
i=0

γirt+i + γIV πθ (st+I), (20)

where V πθ (s) is estimated with the value network,3 rt are
sampled with the interaction with the environment,4 I is an in-
teger tuning the bias-variance trade-off. If I = 1, Aπθ (st, at) =
−V πθ (st) + rt + γV πθ (st+1) has high bias and low variance.
If I → ∞, Aπθ (st, at) = −V πθ (st) +

∑∞
i=0 γ

irt+i has high
variance and low bias. GAE introduces a parameter λ realizing
a compromise between the two extreme cases. The estimated
advantages are used by PPO for the policy optimization.

C. Soft Actor-Critic

We briefly elaborate SAC in this section. The readers are
referred to [42] for more details.

SAC also uses stochastic policy. However, unlike PPO, which
has a constant variance of action distribution, the variance of the
distribution is also an output of the policy network in SAC. As
a result, SAC is able to control whether to explore (high vari-
ance) or to do fine tuning (low variance). Due to possible local
optima in policy and difficulty in exploration, SAC maximizes
weighted sum of rewards and policy entropy, which increases
with higher variance of action. In this way, the action space is
more actively explored until a policy of significant advantage is
found. Following this idea, the definition of the state value (14)
is modified as

V πθ (s) = E

(
T∑
t=1

γtr(st, at) + αH(π(·|st))
∣∣∣∣∣

s1 = s, at = πθ(st)

)
, (21)

where α is the coefficient of the entropy, H(π(·|st)) is the en-
tropy of policyπ in state st, which is higher when the action vari-
ance is higher. The definition of the Q-value is similarly changed
compared to (17). Since the Q-values are often dramatically
overestimated, SAC maintains two independent Q-networks and
uses the smaller value as the Q-value to learn the policy.

With the learned Q-values, the policy is learned such that
the KL-divergence between the Q-value and the policy is mini-
mized, i.e.,

πnew = arg min
π′∈Π

DKL

(
π′(·|s)

∣∣∣∣∣
∣∣∣∣∣exp

(
1
αQ

πold(s, ·))
Zπold(s)

)
, (22)

where Zπold(st) is the normalization factor since
exp( 1

αQ
πold(st, ·)) is not a distribution, but it can be safely

ignored because a constant does not contribute to the gradient.
With a small KL-divergence, the action probability is high
where the Q-value is high given each state.

3It is deterministic with given s but can be biased because it is estimated,
therefore it has high bias and low variance.

4They are unbiased because they are true rewards returned from the envi-
ronment and have high variance because they depend on stochastic actions and
randomness in environment.

TABLE I
ENVIRONMENT AND TRAINING PARAMETERS

5Two models in the intersection scenarios are going straight and turning right. The
state transition matrix is an identity matrix because once the decision is made whether
to go straight or to turn right, it cannot be changed.
6Three models in the lane changing scenarios are going straight, turning left and
turning right. The model transition probabilities from going straight to turning left
and right are small because lane changing are rare compared to going straight. On
the contrary, turning left or right is not a stable state and has higher probabilities of
changing to another model.

The reparametrization trick is applied such that the expec-
tation of the Q-value is not over the distribution of actions
parameterized by θ but over distribution over the action noise,
which is independent from θ.

V. TRAINING AND EVALUATION RESULTS

In this section, we present the training and evaluation re-
sults. We use the open source implementation of RL algorithms
Stable Baselines 3 [43]. Important environment and algorithm
parameters are shown in Table I. For simplicity, we assume the
measurement matrix H is an identity matrix I. The Rayleigh
fading channel is chosen as an example in this section because it
has the lowest diversity level and therefore the worst reliability.
The parameter of the Rayleigh distribution can be calibrated
for individual RSUs separately such that the applied Rayleigh
channel model is the worst possible channel in the responsible
area of the RSU. The outage probability at time step t is

pout
t = 1 − exp

(−(2R/W − 1)WN0

2Ptσ2

)
, (23)
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Fig. 5. Episode reward improvement in training in the intersection scenario.

where h is a Rayleigh distributed random variable with CDF of
1 − exp(−h2/(2σ2))where σ tunes the mean channel gain. The
other symbols in (23) is the same as (8).

When the environment is reset, it is randomly determined
whether the vehicle is going straight forward or turning right
(for the first scenario) or whether the vehicle is keeping lane
or changing lane to left or right (for the second scenario). If
the vehicle is changing lane, it is randomly determined where
(i.e., the y coordinate) it should happen as well. In each step,
the true vehicle state is updated with (2) (if the vehicle is
going straight) or (4) and (5) (if the vehicle is turning). If
the vehicle is changing to the left lane, it first turns left and
then right such that the driving direction is unchanged and the
vehicle position is laterally move by the lane width. The similar
process applies to lane changing to the right lane. After the true
vehicle state is determined, the existing histories are updated
without measurement and their probabilities are multiplied by
the current communication outage probability. A new history is
appended with measurement (for details of this consideration,
see Section III-B) and probability that the communication is
successful. The expected vehicle state and the estimate variance
are computed in (10) and (11), respectively.

Fig. 5 shows the improvement of the episode reward during
training in the intersection scenario. Both algorithms achieve
significant improvement and SAC shows significantly higher
sample efficiency due to its off-policy property. SAC also real-
izes a higher episode reward at the end of training. Since both
algorithms are successful to keep tr(E(PIMM

t )) below pth, the
last two terms of (15) are 0 at every time step. The episode
reward is simply the negative sum of transmission power. It
can be observed that SAC meets the precision requirement with
less transmission power than PPO. However, it is also to note
that the computational complexity and hence the training time
consumption of SAC is significantly higher than PPO.

Fig. 6 shows the true trajectory, estimated trajectory, standard
deviation of estimation error as well as transmission power
(depicted as red lines perpendicular to the driving direction)
in the intersection scenario. With both algorithms, transmission
power is low when the vehicle is outside the intersection and

Fig. 6. Testing results in the intersection scenario. The orange area shows 30
times standard deviation of the estimate. A wide orange area indicates a low
estimate precision.

the transmission power increases when the vehicle enters the
intersection and unveils its intended driving direction (straight
or right).

As shown in Table I, the initial model probabilities in the
intersection scenario are (0.5, 0.5) and stay unchanged until
the vehicle enters the intersection because the two models have
the same prediction before the intersection. Once the vehicles
enter the intersection, the two models have different predictions
and PIMM

t would be very high if the estimation is done without
measurement (i.e., with prediction only). Only when the model
probabilities are updated with measurements and it becomes
unambiguous in which direction the vehicle is heading, PIMM

t

can be kept low again. This is the reason why the transmission
power at the beginning of the intersection is high. Ater that, the
transmission power can be reduced to the level before the inter-
section because the model transition matrix Π in this scenario
is an identity matrix. Although adaptive scheduling schemes
are suggested for remote sensing, e.g., in [10], the proposed
methods are highly empirical and the scheme in [10] is based
on the velocity, which is not suitable for the considered scenario
here because the predictability is not decided by the velocity
but by the vehicle position, i.e., whether the vehicle is inside or
outside the intersection.

Another interesting observation is that PPO and SAC find
different solutions on the straight lanes. While PPO chooses
a higher transmission power and a higher interval between
two transmission, SAC decides to transmit in every time step
with a low transmission power. According to Fig. 5, the total
transmission power realized with SAC is lower. Two possible
reasons for this advantage are
� SAC is an entropy-regulated learning algorithm, which

makes it less likely to get stuck in a local optimum.
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Fig. 7. Episode reward improvement in training in the lane changing scenario.

� SAC tunes the variance of the action distribution, which
makes fine-tuning (reducing the transmission power while
keeping the estimate variance below the threshold) easier
than PPO, which uses a constant action variance.

Fig. 7 depicts the improvement of the episode reward dur-
ing training in the lane changing scenario. Similar to Fig. 5,
SAC has a higher sample efficiency and achieves a lower total
transmission power in the end of the training while keeping the
estimation precision below the threshold.

Evaluation results with true trajectory, estimated trajectory,
standard deviation of estimation and transmission power are
presented in Fig. 8. The results are similar to Fig. 6 when the
vehicle is driving straight.

Unlike in the intersection scenario, the lane changing behavior
does not have a fixed trajectory. Therefore, the model transition
probability matrix Π in this scenario is not an identity matrix.
Instead, the models turning left and turning right in the lane
changing scenario do have certain probabilities of changing to
other models (in the reality, the trajectory in lane changing is
not fully predictable even if you know where the lane changing
begins to take place). As a result, the transmission power is
kept high throughout the lane changing (compared to it, the
transmission power is reduced to a low level once it becomes
clear where the vehicle is heading to in the intersection scenario).
Only when the lane changing is finished and the model is going
straight gains a high probability again, the transmission power
is reduced to a low level.

As a comparison to the RL algorithms, we choose three con-
stant transmission powers in every time step. These transmission
powers are 10 mW, 50 mW and 100 mW. The evaluation results
are shown in Fig. 9. With a transmission power of 10 mW,
the estimate variance requirement cannot be fulfilled in both
scenarios. With a transmission power of 50 mW, the estimate
variance requirement is met in the intersection scenario but not
in the lane changing scenario. With a transmission power of
100 mW, the estimate variance is kept below the threshold in both
scenarios but the total transmission power is considerably higher
than with the two RL algorithms. All the base line performances
are significantly higher than the performances of PPO and SAC.

A complete comparison of the base lines schemes and the RL
algorithms is presented in Fig. 10.

VI. CONCLUSION

In this paper, we propose a DRL based transmission power
control for remote vehicle state estimation and transmission,
such that the estimation precision at the adjacent traffic partici-
pants is high enough to guarantee safety. The traffic awareness
is the prerequisite of autonomous driving. Due to the limitation
of precision, range and cost of the onboard sensors, remote
estimation on an RSU or other vehicles is a promising solution.
However, the estimate has to be transmitted to other vehicles
with wireless communication, which has an inherent outage
probability due to channel fading. When the communication
fails, the other vehicles have to predict the vehicle state with
a low precision. We propose to use KF, EKF and IMM in
complicated traffic scenarios for vehicle state estimation and
to use DRL to optimize the transmission power, such that the
transmission power is minimized and the expected estimation
variance is lower than a given threshold. Two state-of-the-art
algorithms, PPO and SAC are applied. Evaluation results show
that both algorithms outperform baselines with different but con-
stant transmission power. The transmission power is increased
when the vehicle behavior becomes less predictable. Compared
to PPO, SAC has a higher sample efficiency and realizes a lower
total transmission power. The contribution of this paper is to
build a bridge between vehicular communication and traffic
awareness and to solve the complicated optimization problem
with the DRL algorithms.

The source code of this work is available under https://github.
com/bilepeng/scheduling_remote_state_estimation_drl.

APPENDIX A
FORMULATION OF KALMAN FILTER

Given the state xt−1 at time step t− 1, the state xt at time
step t is

xt = F (xt−1) +wt, (24)

where F is the state-transition function and wt ∼ N (0,N) is
the inherent randomness of the process and is assumed normally
distributed with expectation 0 and covariance matrix N. If F is
a linear function and can be expressed as product between a
matrix and xt−1, the process is described by

xt = Fxt−1 +wt, (25)

where F is the state-transition matrix.
Assuming a linear measurement model, the measurement at

time t is

zt = Hxt + vt, (26)

where H is the measurement matrix and vt ∼ N (0,Rt) is
the normally distributed measurement noise, with Rt being the
covariance matrix of measurement noise at time step t.

When F is linear, we can use the Kalman filter to estimate xt

from the noisy measurement. Given the estimated state x̂t−1 at
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Fig. 8. Testing results in the lane changing scenario. (a) Left, PPO. (b) Straight, PPO. (c) Right, PPO. (d) Left, SAC. (e) Straight, SAC. (f) Right, SAC.

Fig. 9. Baselines performances with constant transmission power. (a) Intersection, Pt = 10 mW. (b) Intersection, Pt = 50 mW. (c) Intersection, Pt = 100 mW.
(d) Lane changing, Pt = 10 mW. (e) Lane changing, Pt = 50 mW. (f) Lane changing, Pt = 100 mW.
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Fig. 10. Comparison of performances between base lines with constant trans-
mission powers and the RL algorithms.

time step t− 1, the prior estimate of xt is5

x̂t|t−1 = Fx̂t−1. (27)

The covariance matrix of the prior estimate is

Pt|t−1 = FPt−1F
T +N. (28)

The posterior estimate is computed as

x̂t|t = x̂t|t−1 +Ktỹt, (29)

where Kt is the Kalman gain, which is computed as

Kt = Pt|t−1H
T [HPt|t−1H

T +Rt]
−1 (30)

and ỹt is the innovation, which is computed as

ỹt = zt −Hx̂t|t−1. (31)

The posterior covariance matrix is computed as

Pt|t = (I−KtH)Pt|t−1. (32)

In general, the covariance increases when making predic-
tions because of the process noise and decreases after making
measurement because it contains new information about xt.
Sufficient measurements are necessary in order to maintain a
small estimate covariance.

APPENDIX B
FORMULATION OF EXTENDED KALMAN FILTER

In some cases, the state-transition function F is nonlinear, the
KF cannot be applied. Instead, we can use the EKF, which lin-
earizes the state transition (24). The prediction (corresponding
to (27)) is

x̂t|t−1 = f(x̂t−1) +wt (33)

5We use x̂t|t−1 to specifically indicate the estimate of xt is based on
measurements up to time step t− 1. If the condition is not clear, it is omitted
in the notation. For example, x̂t−1 is the estimate of xt−1 without specification
based on which measurements the estimate is made.

and the linearized prediction covariance (corresponding to (28))
is

Pt|t−1 = F(x̂t−1)Pt−1F
T (x̂t−1) +N, (34)

where F(x̂t−1) is the Jacobian matrix of F at point x̂t−1,
i.e., let xt = F (xt−1), the element fij in row i and column
j of F(xt−1) is fij(xt−1) =

∂xt,i

∂xt−1,j
, where xt,i and xt−1,j are

ith and jth elements of xt and xt−1, respectively. Therefore,
F(x̂t−1)Pt−1F

T (x̂t−1) is a linearized local approximation of
the covariance matrix of the estimate of x̂t|t−1.

Assuming the linear measurement model (26), the updating
described by (29) – (32) is identical in the KF.

APPENDIX C
FORMULATION OF INTERACTING MULTIPLE MODEL

If there are multiple possible state-transition functions, it is
impossible to use a single Bayesian filter to estimate the state.
In this case, the IMM can be applied [44]. In IMM, a set of
models is defined, where each model is a Bayesian filter and has
a certain probability at each time step. LetM be the set of model
indices and i, j ∈ M . A transition matrix Π defines the prior
probabilities that a model is switched to another model, where
the element πji is the probability of model i at the current time
step given model j at the previous time step. At the beginning of
each time step, the mixing probability from model j to model i
is computed as

μji
t−1|t−1 =

πjiμ
j
t−1∑N

l=1 πliμl
t−1

, (35)

where N is the number of models and μl
t−1 is the probability

of model l at time step t− 1. Intuitively, μji
t−1|t−1 is the prior

probability of model j at time step t− 1 switching to model i at
time step t given model i at time step t.

The mixed state estimates and the corresponding covariances
are computed as

x̂0i
t−1 =

N∑
j=1

μji
t−1|t−1x̂

j
t−1 (36)

and

P0i
t−1 =

N∑
j=1

μji
t−1|t−1

(
Pj

t−1 + (x̂j
t−1 − x̂0i

t−1)(x̂
j
t−1 − x̂0i

t−1)
T
)
,

(37)
where x̂j

t−1 is the estimate of x̂t−1 by model j, Pj
t−1 is the

estimate covariance by model j.
In the next step, the current state x̂i

t|t−1 will be predicted with
model i based on the mixed previous state with (27) or (33),
depending on whether the state transition is linear or nonlinear,
where x̂t−1 is x̂0i

t−1 for model i computed with (36). Similarly,
the covariance of prediction Pi

t|t−1 with model i is computed
with (28) or (34), depending on whether the state transition is
linear or nonlinear as well, where Pt−1 is P0i

t−1 for model i
computed with (37).

If measurement is available, the prediction and the covariance
of model i are updated with (29) and (32), producing x̂i

t|t and
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Pi
t|t, respectively. The model probabilities are computed as

μi
t|t =

N (zt;Hx̂i
t|t,P

i
t|t)
∑N

j=1 πjiμ
j
t−1∑N

l=1 N (zt;Hx̂l
t|t,P

l
t|t)
∑N

j=1 πjlμ
j
t−1

, (38)

where N (z;μμμ,σσσ2) is the probability density at z given the
normal distribution with expectation μμμ and variance σσσ2. If no
measurement is available, the model probabilities are computed
as

μi
t|t−1 =

N∑
j=1

πjiμ
j
t−1. (39)

Finally, the output estimate is computed as

x̂IMM
t =

N∑
i=1

μi
tx̂

i
t (40)

and the covariance is computed as

PIMM
t =

N∑
i=1

μi
t

(
Pi

t + (x̂t − x̂i
t)

T (x̂t − x̂i
t)
)
. (41)
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