
OSNMAlib: An Open Python Library for Galileo
OSNMA

Aleix Galan
Dept. of Telecommunications

UAB
Barcelona, Spain

ORCID: 0000-0002-5762-6982

Ignacio Fernandez-Hernandez
DG DEFIS

European Commission
Brussels, Belgium

ORCID: 0000-0002-9308-1668

Luca Cucchi
Joint Research Center
European Commission

Ispra, Italy
luca.cucchi@ec.europa.eu

Gonzalo Seco-Granados
IEEC-CERES

UAB
Barcelona, Spain

ORCID: 0000-0003-2494-6872

Abstract—Galileo has started authenticating its navigation
message through OSNMA. In order to support OSNMA imple-
mentation by receiver manufacturers and application developers,
this paper presents OSNMAlib, an open Python library imple-
menting OSNMA functions. OSNMAlib processes the Galileo
I/NAV pages in decoded SBF, hexadecimal or other formats,
and performs the required operations to authenticate Galileo
navigation data: OSNMA status handling, cryptographic func-
tions required for the Merkle tree, digital signatures, keychain
management and tag authentication. It handles the up-to-date
data authentication status and performs the public key and
chain renewal and revocation processes. This paper describes
OSNMAlib architecture and its main functions and presents the
first test results.

Index Terms—Galileo, GNSS, OSNMA, Authentication, Open
Implementation, Open Source, Python, OSNMAlib

I. INTRODUCTION

Galileo has started broadcasting its Open Service Navigation
Message Authentication feature, or OSNMA [1]. OSNMA
aims at authenticating the Galileo navigation message through
cryptographic functions. By authenticating the navigation mes-
sage, spoofing attacks to Galileo, and GNSS applications in
general, become much more difficult, as nowadays all civil
signals are completely unauthenticated. In addition to data
authentication, OSNMA makes its carrier signal, Galileo E1-
B, more difficult to replay, allowing the protection of receivers
against replay attacks [2] [3].

Galileo OSNMA requires the receiver to implement the
necessary cryptographic functions to authenticate the data,
which is its ultimate purpose [4]. It also requires the receiver
to have a loosely time reference, between some seconds
to some minutes, depending on the use case, in order to
initalise securely the OSNMA protocol. The receiver logic
and cryptographic functions are not trivial to implement for
receiver manufacturers and application developers whose focus
is in the location performance.

With the purpose to facilitate the implementation of OS-
NMA, OSNMAlib is an open source Python library that can be
integrated in existing receivers and applications to incorporate
navigation message authentication to the positioning process.
It can read the Galileo I/NAV pages when received, store the

navigation and authentication data, perform the authentication
verification, and report the status. The platform also allows
to optimize the OSNMA processing in order to reduce time
to authenticated fix, and improve availability, among other
improvements. The OSNMAlib implementation can be found
in the following repository [5]. While not open-source to the
knowledge of the authors, other OSNMA reported implemen-
tations include [6], [7] and [8].

The next section presents the overall OSNMAlib architec-
ture. Then, the paper presents the receiver main functions and a
user execution guide. The next sections cover some specifics
of the library: data identification, TESLA key management,
and subframe generation. After that, the paper presents some
OSNMAlib test results, and finalises with the conclusions.

II. OSNMALIB ARCHITECTURE

This section reviews how the OSNMAlib receiver works at
high level, and its start procedure. This approach will allow
obtaining a general understanding of the receiver without the
need for coding knowledge. However, previous knowledge of
Galileo OSNMA protocol is strongly advised. At the time
of writing, the latest OSNMA full specification published is
provided in [9].

A. Simplified Internal Architecture

The simplified internal architecture of the OSNMAlib re-
ceiver comprises the necessary core classes to understand the
workflow of the software. The relationship of these classes
is exemplified using a class diagram (Fig. 1). For each class,
we provide a functionality definition, and the definition order
follows the logic path of the data entering the receiver.

Fig. 1. OSNMA receiver simplified class diagram.978-1-6654-1616-0/22/$31.00 ©2022 IEEE



• Receiver: Module that emulates a Galileo receiver. It is
responsible for reading the navigation message, rely each
page to the OSNMAReceiver module to extract the ADKD
data, and reconstruct the OSNMA subframe messages. To
do so, it tracks the satellites in view and stores the 30-
second subframe that constitutes the OSNMA data mes-
sages using the class Satellite, which handles subframe
synchronism and completeness. The receiver module is
also in charge of checking the time synchronization at
the start of the execution and verifying that the pages are
suitable to be used (no alert pages, have the correct CRC
and belong to the E1B component).

• SBFAscii: Input module for the Receiver class. The SB-
FAscii class is an iterator that reads the navigation mes-
sage from a CSV file and encapsulates it in a DataFormat
object. The DataFormat object contains the 240 bits of
the Galileo I/NAV double page transmitted, the SVID of
the satellite transmitting it, and the transmission GST at
the start of the page.

• Satellite: Class that stores the OSNMA data in each
page to reconstruct the OSNMA subframe messages. It
checks if the satellite is transmitting OSNMA information
and tracks which pages are received for every subframe.
In the HKROOT case, different pages from satellites
transmitting the same block can be merged.

• OSNMAReceiver: Module that handles all the OS-
NMA protocol-related actions. The OSNMAReceiver
class maintains the protocol state: which Public Key
is in use, which is the TESLA Chain in force, the
last authenticated NMA Header, etc. It is responsible of
verifying the HKROOT messages and start any related
action: creating a TESLAChain object, storing a new
Public Key, updating the internal state to the appropriate
special event, etc. With the information of the TESLA
chain in force, the OSNMAReceiver module also parses
and stores the MACK message into the TESLAChain
object.

• NavigationDataManager: The NavigationDataManager
module stores the navigation data by ADKD. It allows
to retrieve the navigation data linked to an authentication
Tag using the GST of when the Tag was received and not
the IOD value. The module also stores the authenticated
Tags for the same navigation data set, a navigation data
set is authenticated after accumulating a user defined
number of Tag bits.

• TESLAChain: This module represents the TESLA Chain
and is generated with the information retrieved from a
verified KROOT. It provides the necessary methods to
verify a received TESLA Key in an efficient way, and
updates the stored KROOT with every new floating key
transmitted. Only one TESLA Chain object is in force in
any given moment, and for each one a TagStateStructure
object is created. The TESLAChain retrieves the Tags and
TESLA Key/s from the MACK messages, verifies the
TESLA Key/s and relies the tags to the TagStateStructure.

• TagStateStructure: The TagStateStructure class performs

all the necessary operations for the correct tag authen-
tication. Firstly, it checks that the Tags in the MACK
message follow the MAC Lookup Table structure. For
the FLX Tags, it waits until being able to compute the
MACSEQ verification. The correctly structured Tags are
stored in another list waiting for their TESLA Key. When
that TESLA Key is retrieved, the receiver checks for
each Tag if they have already received the data they
authenticate. If a Tag has not received the appropriate
navigation data before the first bit of it’s TESLA Key
was propagated, the Tag is discarded. The Tags with valid
data are authenticated.

B. Start Sequence

When the OSNMAlib receiver is executed, it performs
certain steps before reaching the Started state. The receiver
is considered to be in Started state when it has authenticated
the DSM-KROOT message for the TESLA Chain in force.

The receiver starts assuming that the NMA Status is not
Don’t use and the CPKS is Nominal. The reason behind
this decision is that the receiver cannot trust the retrieved
NMA Status and CPKS until they have been authenticated;
otherwise there would be a thread vector for denial of service
vulnerabilities. After authenticating a DSM-KROOT message,
the receiver handles the NMA Status and CPKS according to
the specifications.

The receiver starts in the Cold Start state, without Public
Key or KROOT. The first thing it does is try to retrieve a
Public Key from a specified file or from the GSC website.
If it cannot retrieve a Public Key from those channels, the
receiver will wait until a DSM-PKR message is transmitted
and the Public Key received is authenticated.

When receiver has a verified Public Key (from any channel)
but no KROOT yet, it is in Warm Start state. Then, the receiver
waits until retrieving a DSM-KROOT from the navigation
message. When retrieving a DSM-KROOT, it checks with the
Public Key ID that the Public Key needed to authenticate
the Digital Signature of the KROOT is the same as the one
stored. If the value is different, it discards the Public Key and
retrieves another one. If the Public Key IDs are the same, then
it proceeds to authenticate the KROOT. If the authentication
fails, the Public Key is discarded and another one retrieved.
If the authentication is successful, the KROOT is verified
and its parameters can be interpreted. If the KROOT verified
corresponds to the TESLA chain in force, as it may be read
during an EOC event and be the KROOT for the next TESLA
chain, the receiver is considered Started.

There are only 2 valid cases where the receiver can read a
KROOT that is not in force: in the Step 1 of the End of Chain
event (EOC) and in the Step 1 of the Public Key Revocation
event (PKREV). In both cases, the key read will be the next
one to be in force, so the receiver stores the key and retrieves
another one. In the case of EOC, this will be repeated until
the KROOT in force is retrieved or the EOC event ends. In the
case of PKREV, the iteration will continue until the PKREV
changes from Step 1 to Step 2.



If the receiver has a verified Public Key and a stored
KROOT at the start of the execution, the receiver is set
to Hot Start state. In this case, the receiver will wait until
authenticating a TESLA Key with the stored KROOT. If the
authentication is successful, the receiver is Started. Otherwise,
the stored KROOT is discarded.

Fig. 2. OSNMA receiver start flowchart considering the stored cryptography
data.

III. RECEIVER FUNCTIONALITY

This section is intended as a quick guide to run the OSNMA
Open Implementation Receiver software. It presents the exe-
cution of test scenarios with real broadcasted OSNMA data
and the execution of the software with custom Galileo data.

The user may be required to perform basic Python scripting
when running the receiver with custom data, although the soft-
ware is provided with templates and comments to minimize the
hassle. The OSNMA Open Implementation Receiver software
is intended to run on Python versions 3.7, 3.8, and 3.9.

A. Test Execution

The software is provided with several test scenarios under
the folder onsnma/tests/scenarios/. The scenarios cover differ-
ent configurations and events of the OSNMA protocol. The
data used by these tests was recorded during the OSNMA
Internal Test Phase (November, 2020 - April, 2021).

The tests can be run by executing the file receiver test.py
under osnma/test/ folder. Keep in mind that this execution

may take a while, since each test comprises several hours of
satellite data.

By default, all tests are executed with info logging level on
the file handler. That is, the log files will contain the maximum
amount of information. This log files are stored under the
folder osnma/tests/test logs. For each sub-test (in this case,
for each scenario) a subfolder is created with the name format
logs YYYYmmdd HHMMSS. Finally, the log files are stored
inside their respective subfolder.

To run the tests it is recommended to use the Python
framework pytest [10], although they can be run calling the
traditional Python interpreter.

1) Pytest: The pytest framework is installed along the
requirements for the software and is the easiest way to execute
the OSNMA Open Implementation receiver tests. To do so, the
following shell commands are provided. Note that the users
interpreter work directory is assumed to be the top folder of
the provided software and python pip shall be already installed.

Listing 1. Test execution with Pytest
$ p i p i n s t a l l − r r e q u i r e m e n t s . t x t
$ cd t e s t s
$ p y t e s t r e c e i v e r t e s t . py

2) Python interpreter: The tests can also be executed using
the traditional Python interpreter. In that case, the following
shell commands should be executed.

Listing 2. Test execution with Python interpreter
$ p i p i n s t a l l − r r e q u i r e m e n t s . t x t
$ cd t e s t s
$ py thon3 r e c e i v e r t e s t . py

B. Nominal Scenarios

During the Internal Test Phase, only six TESLA Chain
configurations where transmitted. For each of them, a test
scenario of around one hour of navigation data has been
developed. These six configuration scenarios are nominal
executions: there is no special event taking place (TESLA
Chain renewal/revocation, public key renewal/revocation, etc).

The test scenarios for each configuration in nominal trans-
mission are stored under the folder osnma/tests/scenarios/con-
fig[configuration number]. The Public Key in use during each
scenario is already stored in the folder. Table I shows the
parameter selection for Configuration 1 and all the possible
parameters that change between configurations.

C. Special Events

Several special events are also included in the test scenarios.
The data set available for the project did not cover the
TESLA Chain revocation and OSNMA Alert Message events.
Although the receiver has been programmed to handle these
events, they have not been tested with real satellite data.



TABLE I
OSNMA PARAMETERS FOR CONFIGURATION 1.

Parameters Settings
Tag size 40 bits
Key size 128 bits
Number of MACK blocks per sub-frame (NMACK) 1
Number of tags per MACK block (nt) 6
Digital Signature algorithm ECDSA P-256
Nb. of blocks in the DSM-HKROOT (NBDK) 8
Hash Function SHA-256
MAC Function HMAC-SHA-256
MACLT 27

Fig. 3. End of Chain event.

1) End Of Chain - Step 1: This test scenario comprises one
hour from the Step 1 of the End Of Chain event. It is stored
under the folder osnma/tests/scenarios/eoc, the Public Key in
use is identified with PKID 9 and is already stored in the
folder. The configuration in force is the number 6 transitioning
to the number 1.

The data available during the test phase had some minor
differences with respect to the applicable ICD. The receiver
handles the EOC event correctly, and will still work with the
ICD consistent data. However, there will be more efficient
ways of handling the EOC event once the data is updated.

Fig. 4. New Public Key event.

2) New Public Key - Step 1: This test scenario comprises
one hour from the Step 1 of the New Public Key event. It
is stored under the folder osnma/tests/scenarios/npk 1, the
Public Key in use is identified with PKID 3 and is already
stored in the folder. The next Public Key is identified with
PKID 4.

3) New Public Key - Step 2: This test scenario comprises
one hour from the Step 2 of the New Public Key event. It

is stored under the folder osnma/tests/scenarios/npk 2, the
Public Key in use is identified with PKID 4 and is already
stored in the folder.

4) New Public Key - Step 1 and 2: This test scenario
comprises one hour from the Step 1 of the New Public Key
event and 1 hour from the Step 2, to simulate the transition
instant. This generates a GST gap between both data files,
but the receiver can handled it correctly. It is stored under
the folder osnma/tests/scenarios/npk 12, the Public Key in use
at the start of the scenario is identified with PKID 3 and is
already stored in the folder. The next Public Key is identified
with PKID 4.

Fig. 5. Public Key Revocation event.

5) Public Key Revocation - Step 1: This test scenario
comprises one hour from the transition from Nominal to
Step 1 of the New Public Key event. It is stored under the
folder osnma/tests/scenarios/pkrev 1, the Public Key in use is
identified with PKID 4 and is already stored in the folder. The
next Public Key is identified with PKID 5.

6) Public Key Revocation - Step 2: This test scenario
comprises one hour from the transition from Step 1 to Step
2 of the New Public Key event. It is stored under the folder
osnma/tests/scenarios/pkrev 2, the Public Key in use is not
stored in the folder. The Public Key is identified with PKID
5.

7) Public Key Revocation - Step 2 with Public Key: This
test scenario comprises one hour from the transition from Step
1 to Step 2 of the New Public Key event. It is stored under
the folder osnma/tests/scenarios/pkrev 2 with pk, the Public
Key in use is identified with PKID 5 and is already stored in
the folder.

8) Public Key Revocation - Step 1 and 2: This test scenario
comprises one hour from the transition from Nominal to Step
1 of the New Public Key event and 1 hour from the transition
from Step1 to Step 2, to simulate the complete event flow.
This generates a GST gap between both data files, but the
receiver can handled it correctly. It is stored under the folder
osnma/tests/scenarios/pkrev 12, the Public Key in use at the
start of the scenario is identified with PKID 4 and is already
stored in the folder. The next Public Key is identified with
PKID 5.

D. Start scenarios
These test scenarios comprise different possible outcomes

of the receiver start sequence. They are tested on the con-



figuration 1 nominal transmission. Some cases are not tested
because they are already handled in some of the previous tests.

1) Correct Hot Start: Test scenario for the configuration 1
in nominal transmission with the Key Root for the TESLA
Chain in force already stored. It is stored under the folder
osnma/tests/scenarios/start scenarios/config1 hot start. The
Public Key in use during the scenario is identified with PKID
1 and is already stored in the folder.

The receiver will verify the stored KROOT with the current
Public Key. Then, after verifying correctly a TESLA Key, it
will consider that the start process has finished satisfactorily.

2) Wrong KROOT on Hot Start: Test scenario for the
configuration 1 in nominal transmission with the Key Root
for a the TESLA Chain that is not the one in force already
stored. It is stored under the folder osnma/tests/scenarios/s-
tart scenarios/config1 wrong kroot. The Public Key in use
during the scenario is identified with PKID 1 and is already
stored in the folder.

The receiver will verify the stored KROOT with the current
Public Key. The verification will fail and the receiver will
fallback to Warm Start (having only the Public Key).

3) Wrong Public Key on Warm Start: Test scenario
for the configuration 1 with a wrong Public Key pro-
vided. It is stored under the folder osnma/tests/scenarios/s-
tart scenarios/config1 wrong kroot. The wrong Public Key is
identified with PKID 3 and is already stored in the folder. They
Public Key in force is identified with PKID 1.

The receiver will load the Public Key stored and set itself
on a Warm Start. After reading a DSM KROOT, it will try
to verify the read message with the Public Key loaded. The
verification will fail because the PKID do not match, therefore
the receiver will discard the Public Key and fallback to a Cold
Start.

IV. EXECUTION WITH CUSTOM DATA

The OSNMA Open Implementation receiver can be used
with custom data files. However, the receiver is only guaran-
teed to work with data consistent with the OSNMA User ICD
for the Test Phase version 1.0.

A. Data Format

The receiver works by instantiating an iterator that, for each
iteration, returns the iteration index and a DataFormat object.
The DataFormat class and the different iterators are defined
under the Python file osnma/receiver/input.py.

In Python, an iterator is an object which implements the
iterator protocol, which consist of the methods iter ()
and next (). The iter () method allows to do some
initializing, but must always return the iterator object itself.
The next () method also allows to do operations, and must
return the next item in the sequence.

The DataFormat object must contain the SVID of the
satellite transmitting the navigation data as an integer, the WN
and TOW at the start of the navigation data page as an integer,
and the navigation data bits for a nominal page (also called
double page) which are 240 bits as a BitArray object. The

BitArray object can be initialized from data in binary format,
hex format, integer or any Python Byte Array objects.

Additionally, the DataFormat object will take as parameters
the signal frequency band and the CRC status. The only
signal frequency band supported by the receiver is the E1-
B, identified with the string “GAL L1BC“, if no band is
specified, the receiver will take that as default. The CRC status
is a boolean value that indicated if the page has passed the
CRC verification, it is set to True by default.

If the custom navigation data is available in Septentrio
Binary Format (SBF), the receiver already includes the input
iterator SBFAscii to handle it. However, the SBF file should be
converted to ASCII readable format with the SBF Converter
included in the free Septentrio RXTools suite.

If the custom format of the data is not supported by the
receiver, a new input iterator should be developed following
the instructions in Section IV-A. The new input iterator can be
forwarded as a parameter to the receiver as any of the native
input iterators without any difference.

B. Receiver Options

The receiver has several configuration parameters that can
be defined previous to execution. Those parameters can be
specified within the code in a Python dictionary or in a separate
JSON File and served as an input parameter to the receiver.
The receiver will load default values for the configuration
parameters not specified.

The parameters allow to specify the folder and scenario
path, and the values of the Merkle Root, Public Key and
KROOT. The logs can also be configured, setting a log level
for the file logs, the console logs or if it should log at all.
Finally, the user can also configure the sync source for the
time synchronization check and the tag length required to
authenticate data, among other parameters.

V. DATA IDENTIFICATION

A. Tag - Data Linkage

On the previous versions of the OSNMA User ICD, the
receiver could link the tags received with the navigation data
they authenticate using the triplet of parameters IDdata:

IDdata = [PRND, ADKD, IODdata] (1)

Where PRND identifies the satellite which data is being
authenticated, ADKD corresponds to the ADKD mask type,
and IODdata has different values according to the ADKD
value. In the case of ADKD0, the parameter IODdata contains
the 3 LSB-truncated I/NAV IOD bits of the authenticated
ephemeris and clock data (Words 1, 2, 3 and 4).

This legacy approach had several problems of collision on
the IOD truncated value and has been changed on the current
version of the OSNMA User ICD [9]. Now, a tag retrieved
in a subframe transmitted at the time GSTSF is linked with
the navigation data transmitted in the previous subframe (at
the time GSTSF − 30 sec). However, there is still room for
improvements and optimizations, and that is what OSNMAlib
does for the ADKD 0 and 12.



B. Implemented Optimization

To optimize the navigation data linkage, OSNMAlib tracks
the complete 10 bits IOD value of the I/NAV Ephemeris and
Clock data words that are authenticated by ADKD 0 and 12,
recording the Galileo System Time (GST) value of the first
and the last word received with such IOD.

When receiving a tag with ADKD0, the software searches
on the list of ADKD0 navigation data blocks for the first block
with a start GST lower than the reception subframe GST for
the tag, and links them. Using this technique, the tags get
linked with the authenticated data using the full value of the
IOD and the repetition problem gets solved.

In case the IOD value changes at the same subframe the tag
is received, the tag will be linked to the previous subframe
data, because the start GST of the new ADKD0 navigation
data block identified by the new IOD will not be less than the
subframe GST of the tag. In case the IOD remains constant,
the tag gets linked to the previous (that is the same as the
current) ADKD0 navigation data block.

Moreover, this technique has another advantage. In case the
receiver loses some ADKD0 words at the beginning of the
subframe previous to receiving the tag, it can effectively use
the words from the same subframe where the tag is transmitted
to generate the ADKD0 data block (if the IOD is the same)
as illustrated in Fig. 6. By using the full IOD field value, the
receiver will have no doubts that the regenerated ADKD0 data
block contains correct navigation data.

Fig. 6. Using the complete IOD we can use I/NAV words from the same
subframe as the tag to perform the authentication.

Using this approach, we can even authenticate navigation
data of a satellite that is no longer in view but for which
we have stored data by using the cross-authentication tags
from other satellites. When a cross-authentication tag for the
navigation data of a satellite that is no longer in view fails, then
the stored data can not be used anymore for authentication.

The logic of the tag-data linkage algorithm is described in
the Fig. 6. The same algorithm is applied for ADKD12.

VI. TESLA KEYCHAIN MANAGEMENT

The cornerstone of the OSNMA protocol is the transmis-
sion of TESLA keys and authentication of them against the
previously transmitted keys. In TESLA, the keys are generated
in a chain using a secured one-way hash function and, then,
transmitted in reverse order. With this schema, the receiver can
authenticate any TESLA key from the chain using an older

Fig. 7. OSNMA receiver data-tag linkage flowchart.

authenticated key (e.g. the root key transmitted in the DSM-
KROOT message) simply by doing a predefined number of
hashes.

A. Authenticating TESLA Keys

Therefore, one of the first functionalities that needs to
solve the TESLA Chain module is the storage and verification
of TESLA keys. The most efficient approach to reduce the
amount of operations necessary to verify a TESLA key is to
calculate the hashes up to the most recent verified key, instead
of calculating all the hashes until the root key.

The most important parameter to know the amount of hashes
to be calculated is the index of a received TESLA key. The
index of a TESLA key is in reference to the root key, i.e.
the number of TESLA keys transmitted since the root key.
According to the configuration in the User ICD version 1.0, all
the satellites transmit the same TESLA key at the same epoch.
Then, the index of a received TESLA key can be computed
as:

index =

⌊
GSTi −GST0

30

⌋
+ 1 (2)

Where GSTi is the Galileo System Time at the start of the
30 seconds subframe where the key is received, GST0 is the
Galileo System Time associated with the root key.

B. Storing TESLA Keys

In order to store the TESLA keys, there are two possible
approaches: storing all the keys of the chain and serving each



key when needed or saving the last authenticated TESLA key
(and the root key for reference) and computing the necessary
key when needed.

The first approach, storing all the keys, has an obviously
high memory complexity that is more relevant the longer
the TESLA chain, stressing the memory requirements for the
receivers. But it has a very low computational complexity
when serving a key at a given index.

The second approach, storing only the root key and the last
authenticated TESLA key, has a very low memory require-
ment: storing only 2 keys. But it requires to compute all the
hashes up to the index of a key when this key is requested.

In a nominal operation of the OSNMA protocol where at
least one satellite is always in view, only the last verified key
will be requested to authenticate the tags; therefore requiring
no extra hash computation. That is because once the receiver
gets a key, process all the tags that have been waiting for that
key. If the receiver do not miss any key (one satellite in view
every 30 seconds subframe), no tag will be requesting and old
key.

But even in case the receiver loses sight of all satellites for
30 minutes (and assuming the data authenticated by the tags
is still relevant), only 60 hashes have to be done to generate
the TESLA Key to authenticate the tags received before the
blackout. Taking into consideration that the hash operation is
a very efficient operation, this is an assumable price to pay in
front of the memory requirements of keeping the full TESLA
chain in memory.

The overall process discussed is illustrated in the Figure 8.

C. Handling of Floating Root Keys

Another point of interest related with the TESLA chain is
the transmission of floating root keys in the DSM-KROOT
message. Floating root keys are keys from the same TESLA
chain, but are transmitted in the DSM-KROOT with their
signature and the configuration parameters of the chain. Con-
sequently, the change of the root key received does not imply
a TESLA chain change, as indicated by the KROOT Chain ID
parameter, which remains the same.

The idea behind the floating root keys is to facilitate the
TESLA key verification process for those receivers starting
in the middle of a TESLA Chain, allowing them to perform
less hashes. In our implementation of the OSNMA protocol,
when a floating DSM-KROOT message is received, it is
stored inside the TESLAChain object, replacing the last DSM-
KROOT stored.

Despite updating the DSM-KROOT value, the root key of
the TESLAChain and the parameters regarding the root key
are not updated, and keep fixed to the ones in the first DSM-
KROOT message received. This is necessary to maintain index
consistency on the already assigned key indexes on tags and
last received TESLA key. At the end, there is not a loss of
efficiency because the last authenticated TESLA key is always
more recent than a possible floating root key.

Fig. 8. OSNMA TESLA key management flowchart.

However, the new floating DSM-KROOT is saved to disc as
the root key for this chain and replacing the last one, easing
the process of a future Hot Start.

VII. SUBFRAME REGENERATION

One problem with the OSNMA protocol is that its basic
structure of information is different from the basic structure
of information of the Galileo navigation message. In Galileo
I/NAV, each nominal page (2 seconds) is protected with a
convolutional Forward Error Correction (FEC) code protecting
it from fading and allowing the regeneration of the page
even if some bits are lost. In OSNMA the basic structure of
information is a subframe (15 nominal pages, 30 seconds), an
is not protected with any redundant technique.

While this statement is mostly true regarding the MACK
message of OSNMA, for the HKROOT message a more
intelligent fine-grained approach can be developed. At a given
epoch, all the satellites transmit DSM blocks in the HKROOT



message related to the same whole DSM message. Also, a
DSM message is fully transmitted by each satellite before
transmitting the next. Finally, the DSM block offset at which
each satellite starts transmitting the DSM block sequence is
defined by (3).

∆DSM = mod(PRNA, N) (3)

Where PRNA identifies the Galileo satellite transmitting
the authentication data, and N is currently undefined in
[9], although in line with previous test ICD versions and
the current test signal, OSNMAlib implements N = 8. For
example, a satellite with PRNA 3 will start transmitting the
DSM message at Block ID (BID) 3, while a satellite with
PRNA 25 will start transmitting the DSM message at BID 1.

The DSM offset was enforced by the Equation 3 in the
Internal Test Phase ICD and during the development and test
of the OSNMAlib. However, the most recent User ICD [9] no
longer specifies how the DSM offset value is calculated.

With this information, and knowing that it may vary in
the future, it is possible to reconstruct a DSM block from
various DSM blocks with the same BID that are missing
different pages. This reconstruction can be done even if the
page number 2 (the one containing the DSM ID and DSM
BID fields) is missing in both of them; as long as it has been
retrieved from another DSM block for both subframes.

Fig. 9. Regenerate DSM blocks merging pages of half read subframes. In
this case, the DSM block 2 can be regenerated.

In order to merge DSM blocks of future subframes is
necessary to read the DSM ID of that subframe because it may
have changed (for example in the transmission of a floating
root key). While often it will be the case, the OSNMA protocol
does not commit to align the start of the transmission of a new
DSM message with the end of a full transmission of the current
DSM.

However, knowing the DSM ID of the current subframe
allows to merge current blocks with blocks received in the past.
This can be done as long as the number of subframes between
the block in the past and the current block is not bigger than
the difference between the BID offset for the satellite and
the current BID. This way, the receiver can be sure that they
belong to the same DSM ID, because the starting BID is fixed
for every satellite.

This case may be relevant if we consider the Time To First
Authenticated Fix (TTFAF) situation in a warm start. When

the receiver starts to receive data, it may start in the middle
of a subframe transmission. With the classic approach, that
subframe would be discarded because of missed pages. With
our approach, if the full DSM message transmission does not
start in the first full subframe received (the BID is not the
same as the block offset for that satellite), the partially received
subframe can be used and merged with the next reading of that
subframe.

For example, with only one satellite in view transmitting
OSNMA data and the receiver starting after the first page of a
subframe, our approach can lead to a 28-second improvement
in the TTFAF. With more satellites in view, the effectiveness
will depend on the relative BID offset between them. The
approach is also extremely relevant in situation with heavy
interference or discontinuities in the received signal, where 30
seconds subframes may be discarded for 2 seconds interfer-
ences.

Figure 9 illustrates a possible scenario where the receiver
starts with 2 OSNMA transmitting satellites in sight and
satellite PRNA 2 enters at the middle of a subframe. Knowing
the BID of the other DSM blocks, the receiver deduces that
the BID of the half read DSM block is 2. After around 60
seconds, the satellite PRNA 16 leaves sight in the middle
of a subframe. The receiver, knowing that the satellite 16
was transmitting the DSM BID 2, merges the data of both
subframes and regenerates the DSM block 2.

VIII. TEST RESULTS

As an example of how OSNMAlib works we have included
the contents of the logs from the execution some tests. As
previously indicated, some data was gathered during the first
OSNMA testing, before the Public Observation Phase. The
log snips are selected to show relevant functionality, and are
properly dated and explained

A. Configuration 1 Logs

The data used on this test was transmitted on the 04/12/2020
from 11:30 to 12:28; with the TESLA chain Configuration 1
of the OSNMA Receiver Guidelines for the Test Phase, Issue
1.0 [11].

Figure 10 shows how the receiver is decoding subframes
from different satellites (i.e. 3, 5, and 9). Some satellites are
not transmitting OSNMA data, such as satellite 3. For the
satellites transmitting OSNMA data, the receiver logs the DSM
ID of the DSM received and its block ID.

After receiving the 8 necessary DSM blocks for the DSM
number 7, the DSM-KROOT message is authenticated at WN
1110 and TOW 473550. The Chain ID (CID) of the root key
(KROOT) is the same as the CID in force and the Chain and
Public Key Status (CPKS) is NOMINAL. Therefore, a new
TESLA Chain is created from the DSM-KROOT message and
the receiver is set to STARTED state.

Now, the receiver starts decoding and authenticating the
MACK messages received while waiting for reconstructing the
first DSM-KROOT. In this configuration, there are no FLX



Fig. 10. Authentication of a KROOT.

tags, therefore the authentication of the MACSEQ message
adds no new tags to the tag pool.

Figure 11 shows the subframe transmitted by satellite 5 at
WN 1110 and TOW 473580. The TESLA key received in
that subframe allows to authenticate the MACSEQ from the
previous subframe, and all the tags that were waiting for this
key.

At this moment, only three satellites in view are transmit-
ting OSNMA data, therefore there are only three MACSEQ
authentications and three TAG0 authentications. However, the
Tags are also cross-authenticating the other satellites that are
in view but are no transmitting OSNMA data (i.e. satellite 31
and 3).

Figure 12 shows how OSNMAlib logs the navigation data
that can be considered authenticated after receiving enough
number of tags. For ADKD 0 (and 12) it logs the satellite
from which navigation data is being authenticated, the IOD
of the data to ease identification and the range of GST for
which the data has been authenticated. Because for ADKD 4
there’s no IOD in the words it authenticates nor is specific to
a particular satellite, we just log the range of GST for which
data of those words have been authenticated.

After processing the first subframe received at GST 1110-
473580 and authenticating the possible tags and data, the
subframes received on the same GST from other satellites (i.e.
satellite 9 and 24) do not allow us to authenticate any more
tags or data. That is because all satellites are transmitting the
same key at the same epoch.

Fig. 11. Authentication of the MACSEQ and Tags.

B. End of Chain Logs

The data used on this test was transmitted on the 18/03/2021
from 12:07 to 13:06; with the TESLA chain Configuration 6
before transitioning to Configuration 1.

Figure 13 shows that a DSM-KROOT is authenticated at
WN 1125 and TOW 385830; and it is identified with CID 3.
However, the CID in force is 2 and the CPSK is EOC; that
means that the receiver has read and authenticated a DSM-
KROOT message belonging to the next TESLA chain to be in
force. That happens because during the EOC phase both the
DSM-KROOT for the current chain and the DSM-KROOT for
the next chain are transmitted interleaved.



Fig. 12. Navigation data with enough bits to be considered authenticated.

In this case, OSNMAlib stores the read and authenticated
DSM-KROOT and keeps processing data hoping to find the
current DSM-KROOT.

Figure 14 shows how after some subframes, a new DMS-
KROOT is retrieved and authenticated. In this case is the one
belonging to current TESLA chain in force, so it is used and
the receiver is set to STARTED.

C. New Public Key Logs

The data used on this test for the first step of the NPK pro-
cess was transmitted on the 25/01/2021 from 12:04 to 13:03;
with the TESLA chain Configuration 2 and authenticated with
the Public Key ID 3.

The data used on this test for the second step of the NPK
process was transmitted on the 26/01/2021 from 10:23 to
11:22; with the TESLA chain Configuration 2 and authen-
ticated with the Public Key ID 4.

Fig. 13. EOC event with a DSM-KROOT retrieved that is not in force.

Fig. 14. EOC event with a DSM-KROOT retrieved that is in force.

Figure 15 shows how a DSM-KROOT in force is authenti-
cated with the Public Key ID 3 while the CPKS value is set
to NPK.

Fig. 15. DSM-KROOT authenticated with a PKID of 3. The CPKS value is
NPK

Figure 16 shows that a DSM-PKR message is transmitted
along with the DSM-KROOT message, as expected on the



first step of the NPK process. This DSM-PKR is retrieved
and authenticated. The PKID of the new Public Key is 4 but
the Public Key now in use is the 3. Therefore, the Public Key
is stored in the receiver waiting for the key change.

Fig. 16. New Public Key read with PKID of 4.

Figure 17 shows the moment where the new Public Key ID
4 enters in force. That occurs by receiving a DSM-KROOT
message that uses the new Public Key for it is authentication.
If the DSM-KROOT is successfully authenticated, the Public
Key in force is changed to the new key and the last one is
deleted.

It is also worth it to notice that a change of Public Key does
not imply a change of Tesla Chain. If we compare Figures 15
and 17, we can check that the TESLA Chain in force keeps
at the number 2.

Fig. 17. DSM-KROOT authenticated with a PKID of 4. The CPKS value is
NPK

D. Public Key Revocation Logs

The data used on this test for the first step of the Public
Key Revocation (PKREV) process was transmitted on the
29/01/2021 from 09:24 to 10:23; with the TESLA chain
Configuration 2 and authenticated with the Public Key ID 4.

The data used on this test for the second step of the
PKREV process was transmitted on the 29/01/2021 from
11:32 to 12:31; with the TESLA chain Configuration 2 and
authenticated with the Public Key ID 5.

Figure 18 shows the authentication of a DSM-KROOT with
CID 2 and PKID 5. The NMAS is set to DONT USE and the
CPKS is PKREV. Therefore, the previous PKID 4 is revoked.
While the NMAS is set to DONT USE the tags are not
processed.

Fig. 18. DSM-KROOT authenticated with a PKID of 5. The CPKS value is
set to NPK and the NMAS to DONT USE

Figure 19 shows how, during the DONT USE status, a
DSM-PKR with the new key is regularly transmitted to au-
thenticate the DSM-KROOT. This is necessary because the
only way for the receiver to know the current state of the
OSNMA protocol is to authenticate a DSM-KROOT message.

Fig. 19. While the DONT USE status, a DSM-PKR is tranmitted with PKID
of 5

Figure 20 shows how eventually the NMAS is set again to
TEST, allowing navigation authentication from this moment
onward. Note that the CPKS is still PKREV, because the new
Public Key will still be transmitted during a defined period.

IX. SUMMARY AND CONCLUSIONS

This paper has presented OSNMAlib, an open source Python
library implementing Galileo OSNMA, for its integration in
receivers and applications.

OSNMAlib architecture contains the necessary classes to
process OSNMA data and perform the Galileo I/NAV data
authentication. The software workflow is organised around an
OSNMAReceiver class that handles all the OSNMA protocol
actions. It is supported by a GNSS receiver and data decoder
class, that takes the I/NAV pages in decoded SBF, hex or other



Fig. 20. When the NMAS returns to TEST, the DMS-KROOT messages are
authenticated with PKID 5

formats, and other classes to manage the OSNMA overall sta-
tus, keychain, public keys and Merkle tree, data-tag allocation
and data authentication status. While the position calculation
is not performed, it reports to the receiver which data and
from which satellites is authenticated, allowing to introduce
OSNMA in the receiver positioning workflow. OSNMAlib can
also handle the public key and chain renewal and revocation
processes.

At startup, OSNMAlib reads the available configuration and
first checks the loose time synchronization assumptions and
time source, when required. It then verifies the availability of
the Merkle root, public key, and root key, and starts the logic
to obtain them if they are not available, as per the currently
applicable OSNMA SIS ICD. OSNMAlib has been also used
for testing some optimizations of the OSNMA receiver logic,
such as linking I/NAV pages from different subframes and
authenticating them as early as possible with the keys and
tags received, reducing the time to authenticated fix.

The OSNMAlib package is provided with test scenarios
based on data collection during the OSNMA internal and
public observation test phases. A procedure for running the
tests is presented as an example. The available tests include
various configurations and chain renewal, public key renewal,
and public key revocation procedures.

Further development and testing of OSNMAlib will include
test campaigns with more data, optimization of the code ex-
ecution, additional modules integrating other receiver blocks,
and real-time performance evaluation. While the platform has
mostly been tested in post-processing, it should allow real-time
OSNMA processing in operational receivers.

During the so-called OSNMA Public Observation Phase,
currently ongoing, the OSNMA signal is still transmitted
in test mode, but with high continuity and availability. We
hope that OSNMAlib can be a useful tool for understanding
OSNMA, reducing the effort of integrating it in receivers and

applications, and eventually increasing PNT resilience at no
or minimal nuisance for users and applications.

ACKNOWLEDGMENT

This work has been supported by European Commission
contract SI2.823546/9 and by the Spanish Ministry of Science
and Innovation project PID2020-118984GB-I00.

REFERENCES

[1] “Tests of Galileo OSNMA underway,” https://ec.europa.eu/
defence-industry-space/tests-galileo-osnma-underway-2021-02-11 en,
accessed: 2021-11-06.

[2] T. E. Humphreys, “Detection strategy for cryptographic GNSS anti-
spoofing,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 2, pp. 1073–1090, 2013.

[3] G. Seco-Granados, D. Gomez-Casco, J. A. Lopez-Salcedo, and
I. Fernandez-Hernandez, “Detection of replay attacks to GNSS based
on partial correlations and authentication data unpredictability,” Gps
Solutions, vol. 25, no. 2, pp. 1–15, 2021.

[4] I. Fernandez-Hernandez, V. Rijmen, G. Seco-Granados, J. Simon, I. Ro-
driguez, and J. D. Calle, “A navigation message authentication proposal
for the Galileo open service,” NAVIGATION, Journal of the Institute of
Navigation, vol. 63, no. 1, pp. 85–102, 2016.

[5] A. Galan, I. Fernandez-Hernandez, G. Seco-Granados, “OSNMAlib,”
https://github.com/Algafix/OSNMA, 2021.

[6] B. Motella, M. T. Gamba, and M. Nicola, “A real-time OSNMA-ready
software receiver,” in Proceedings of the 2020 International Technical
Meeting of The Institute of Navigation, 2020, pp. 979–991.

[7] C. Sarto, O. Pozzobon, S. Fantinato, S. Montagner, I. Fernandez-
Hernandez, J. Simon, J. D. Calle, S. C. Diaz, P. Walker, D. Burkey et al.,
“Implementation and testing of OSNMA for Galileo,” in Proceedings of
the 30th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS+ 2017), 2017, pp. 1508–1519.

[8] “OSNMA: the latest in GNSS anti-spoofing secu-
rity,” https://www.septentrio.com/en/learn-more/insights/
osnma-latest-gnss-anti-spoofing-security, accessed: 2021-11-06.

[9] “OSNMA User ICD for the Test Phase, Issue 1.0,” European Union,
Tech. Rep., Nov 2021.

[10] H. Krekel. (2015, Sep.) Pytest: Python test framework. [Online].
Available: https://docs.pytest.org

[11] “OSNMA Receiver Guidelines for the Test Phase, Issue 1.0,” European
Union, Tech. Rep., Nov 2021.


