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Abstract—The expansion of Global Navigation Satellite Sys-
tems (GNSS) to safety-critical applications in Equatorial and
high-latitude regions has unveiled the need to cope with the so-
called ionospheric scintillation, an impairment introducing rapid
power and carrier phase fluctuations onto the received signal. At
carrier tracking level, the use of hybrid autoregressive Kalman
filter (KF-AR)-based techniques has shown great potential in
mitigating its impact onto the performance of GNSS receivers. In
this paper we provide a deep analysis for Kalman filter designers
to have a clear idea on the interplay of the Kalman modeling
parameters onto the steady-state behaviour of these techniques.
To this end, we employ the Bayesian Cramér-Rao bound (BCRB)
as a useful tool to predict the expected performance of KF-AR
techniques in a straightforward manner. Furthermore, we eval-
uate the goodness of these techniques under stringent working
conditions, where the BCRB analysis is further complemented
with empirical results, and we show the importance of using
adaptive KF-AR implementations to attain optimal performance.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) are considered

to be one of the quintessential technologies for ubiquitous

positioning and navigation purposes using satellite ranging

signals. Thanks to its success in open-sky environments, plenty

of efforts are shortly being made to expand this technology

beyond the limits of its original design [1]. This implies mov-

ing to the arena of high-precision, safety-critical applications

such as aviation, maritime navigation and autonomous vehicle

driving, just to mention a few. In that sense, an upward trend

is to exploit carrier phase measurements, as they are of better

quality than pseudorange measurements and do provide ultra-

precise positioning information. However, this goes hand in

hand with new technological challenges to be faced by next-

generation GNSS receivers, such as weak signal reception

and multipath [2]. In particular, the deployment of GNSS

in emerging countries has motivated the need to face the

challenge posed by the so-called ionospheric scintillation.

Ionospheric scintillation is one of the most challenging

sources of error to combat within the GNSS community

[3]. It is an impairment whereby transionospheric radio wave

propagation is influenced by solar radiation ionizing the upper

Earth’s atmosphere. The ionospheric electron density irregu-

larities affect GNSS signals in form of random amplitude fades

This work has been supported by the Spanish Ministry of Economy and
Competitiveness under grant TEC2017-89925-R.

and rapid phase fluctuations, causing severe carrier phase jitter

and loss of signal, and thus having a detrimental effect onto the

performance of GNSS receivers. Moreover, ionospheric scin-

tillation is known to be more frequent in Equatorial and high-

latitude regions [4], thus hampering the deployment of GNSS

in those areas. Interestingly, the bottleneck of GNSS receivers

under scintillation conditions takes place in the determination

of the user dynamics phase of interest at carrier tracking level.

Therefore, the design of advanced carrier tracking techniques

for providing dynamics phase measurements robust to iono-

spheric scintillation becomes of paramount importance.

Traditional carrier tracking architectures implement the

well-known phase-locked loop (PLL), a closed-loop architec-

ture that is known to have serious issues in the presence of

propagation impairments such as ionospheric scintillation. As

a countermeasure, by noting that the random nature of the

latter can be modeled through correlated Gaussian functions,

such as autoregressive (AR) processes [5], the so-called hybrid

autoregressive Kalman filter (KF-AR) arises as the natural

leap forward for estimating the user dynamics phase in the

presence of scintillation. It is an innovative approach pioneered

by the authors of this work [6], [7] that embeds the dynamics

phase and scintillation phase signal models into one single

state-space formulation. In [6], a leap forward was made by

proposing a fully adaptive KF-AR implementation in order to

deal with the time-varying nature of ionospheric scintillation.

In this way, clean (i.e. undisturbed) estimates of the user

dynamics phase can be provided, while making the presence

of time-varying scintillation explicit.

The use of KF-AR-based techniques has shown great po-

tential to deal with ionospheric scintillation in GNSS receivers

[8], [9]. However, the literature still lacks a deep analysis on

the interplay of the Kalman modeling parameters playing a

key role in the filtering performance, thus preventing Kalman

filter designers from fully understanding the behaviour of

these techniques. Furthermore, existing contributions so far

have, to our best, proven the effectiveness of the KF-AR

only in controlled scenarios with favorable signal reception

conditions. Therefore, this paper intends to contribute in a

twofold way. On the one hand, to shed light on the steady-

state behaviour of KF-AR techniques as a function of the AR

modeling parameters, so that designers can have a clear idea

during the design and tuning processes. To this end, we will

make use of the Bayesian Cramér-Rao bound (BCRB), a useful
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tool to predict the best achievable estimation performance

as a function of the Kalman configuration parameters. And,

on the other hand, to evaluate the performance of KF-AR

techniques over conventional PLLs under stringent working

conditions, and to reaffirm the importance of using adaptive

implementations over fixed ones. For this purpose, we will

extend the analysis in previous contributions by consider-

ing different realistic receiver noise (assumed additive white

Gaussian, AWGN) hypotheses, from open-sky environments to

urban scenarios with abounding obstacles to the line-of-sight

satellite visibility, and we will complement the analysis with

some empirical results for the sake of completeness.

II. STATEMENT OF PROBLEM AND SIGNAL MODEL

A. State-Space Model for Dynamics Phase

The discrete-time evolution of the dynamics phase of inter-

est, denoted as θ (n), can be approximated by a third-order

kinematic model [10] as follows,

θ (n) ≈ θ (n− 1)+T θ̇ (n− 1)+
T 2

2
θ̈ (n− 1)+

T 3

3!

...
θ (n− 1) (1)

with T the sampling time, and where θ̇ (n), θ̈ (n) and
...
θ (n)

are the Doppler shift, Doppler rate and Doppler acceleration,

respectively (i.e. first, second and third derivatives of θ (n)).

In terms of Kalman filtering, the model in (1) can be written

in state-space notation as the state transition equation,

xθ (n) =





1 1 1/2
0 1 1
0 0 1



xθ (n− 1) +





1/6
1/2
1



 v (n) (2)

xθ (n) = Fθxθ (n− 1) +Gθv (n) (3)

where xθ (n)
.
=

[

θ (n) T θ̇ (n) T 2θ̈ (n)
]T

is the well-known

state vector containing the sample functions of the dynamics

phase, and Fθ is the transition matrix used to propagate the

state vector over time. The parameter v (n)
.
= T 3

...
θ (n) stands

for some process noise accounting for the higher-order terms

of the signal model missing in xθ (n), and it can be modeled as

v (n) ∼ N
(

0, σ2
v

)

, with E [v (i) v∗ (j)] = 0 for i 6= j. In that

sense, Gθ is the process noise matrix in charge of weighting

the effect of v (n) onto each state.

B. State-Space Model for Scintillation Phase

On the other hand, the discrete-time evolution of scintil-

lation phase, denoted as ψ (n), is considered to follow a

pth-order autoregressive process, usually expressed as AR(p),

given by [11],

ψ (n) ≈

p
∑

k=1

βkψ (n− 1) + sp (n) (4)

where {βk}
p
k=1 are the set of p AR coefficients, and sp (n)

is the so-called AR driving noise or prediction error, usually

modeled as sp (n) ∼ N
(

0, σ2
sp

)

, with E
[

sp (i) s
∗

p (j)
]

= 0

for i 6= j.

In terms of Kalman filtering, the model in (4) can be written

in state-space notation as the state transition equation,

xψp
(n) =













β1 β2 β3 · · · βp
1 0 0 · · · 0
0 1 0 · · · 0
... 0

...
. . .

...
0 · · · 0 1 0













xψp
(n− 1) +













1
0
0
...
0













sp (n)

(5)

xψp
(n) = Fψp

xψp
(n− 1) +Gψp

sp (n) (6)

where xψp
(n)

.
= [ψ (n) ψ (n− 1) · · · ψ (n− p+ 1)]

T
is

the (p × 1) state-space vector of the AR(p) random process,

and sp (n) plays the role of the Kalman process noise.

C. KF-AR State-Sace Formulation

The beauty of the KF-AR is that it embeds the model for

the dynamics phase in (2) and the one for scintillation phase

in (5) into one single state-space formulation, thus leading to

the following augmented state transition equation,
[

xθ (n)
xψp

(n)

]

=

[

Fθ 03×p

0p×3 Fψp

] [

xθ (n− 1)
xψp

(n− 1)

]

+

[

Gθ 03×1

0p×1 Gψp

] [

v (n)
sp (n)

]

(7)

x (n) = Fx (n− 1) +Gu (n) (8)

where the state vector x (n)
.
=

[

xθ (n) xψp
(n)

]T
concate-

nates the magnitudes of interest for carrier dynamics and

scintillation phase tracking, the transition matrix F is a block-

diagonal matrix formed by the transition matrices of each

contribution, and the effect of the process noise onto the

different states becomes zero-mean with covariance matrix,

Q
.
=

[

σ2

vGθG
T
θ 03×p

0p×3 σ2

spGψp
GT
ψp

]

. (9)

The KF-AR aims at providing clean estimates of x (n)
based on the noisy measurements available at its input, which

are given by the following measurement equation,

z (n) = θ (n) + ψ (n) + w (n) (10)

z (n) = Hx (n) +w (n) (11)

understood as a linear transformation of the state

vector x (n) through the observation matrix H
.
=

[

1 0 0 1 01×(p−1)

]

, and where w (n) ∼ N
(

0, σ2
w

)

accounts for the AWGN noise corrupting the measurements.

D. Recursive BCRB

The estimation performance of the Kalman filter is

given by the covariance matrix of the state estimate,

Σx (n)
.
= E

[

(x̂ (n)− x (n)) (x̂ (n)− x (n))H
]

, which is

lower bounded by the BCRB,

Σx (n) ≥ J
−1

B
(n) (12)

with JB(n) the Bayesian information matrix (BIM) that can

be computed recursively as [12],

JB (n) =
[

Q+ FJ
−1

B (n− 1)FH
]

−1

+ σ−2

w H
H
H. (13)

where the initial covariance matrix of the state estimate set by

the user can be readily employed to initialise such recursion.

That is, J−1
B (0) = Σx (0).
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III. PERFORMANCE LIMITS OF KF-AR TECHNIQUES

The availability of the recursive BCRB in (13) allows one to

predict the performance of KF-AR filters in a straightforward

manner and extract different conclusions on how good the

estimates provided by this kind of techniques are expected to

be. By introducing the signal models and Kalman matrices

in Section II into (13), we carry out next a detailed analysis

on the steady-state behaviour (i.e. n → ∞) of the KF-AR

as a function of the different parameters used to configure

the technique. To this end, in order to focus on the impact of

ionospheric scintillation, in the sequel we will consider a static

receiver with dynamics process noise variance σ2
v = 3.4·10−17

rad2 as a result of considering a residual Doppler acceleration

of 2 · 10−4 Hz/s2 due to satellite motion. For simplicity, we

will henceforth refer to J−1

B (n→ ∞) as directly J−1

B . More

precisely, the BCRB for dynamics phase will be referred to as
[

J−1

B

]

1,1
, and the BCRB for scintillation phase as

[

J−1

B

]

4,4
.

A. BCRB for AR(1) as a Function of Model Parameters

We will start by considering an AR(1) process for scin-

tillation phase and evaluating the impact of the AR model

parameters onto the BCRB. For a carrier-to-noise ratio (C/N0)

of 45 dB-Hz, Figure 1 shows the root BCRBs,
√

[

J−1

B

]

1,1

and
√

[

J−1

B

]

4,4
, for different values of the AR coefficient

β1 as a function of the AR driving noise σ2
sp

normalized

to 4π2 rad2. The black striped line, denoted as

√

[

J̃−1

B

]

1,1
,

depicts the dynamics phase root BCRB when scintillation

is absent. As can be observed, increasing either β1 or σ2
sp

induces a higher root BCRB, departing from

√

[

J̃−1

B

]

1,1
when

these values are sufficiently large. Intuitively, this phenomenon

can be understood in two ways, although linked with one

another. First, by thinking of the KF-AR as a conventional

PLL with some equivalent loop bandwidth that is interestingly

determined by the Kalman process noise [13], in this case

σ2
sp

. As scintillation gains relevance, the KF-AR must enlarge

its equivalent loop bandwidth in order to follow scintillation

fluctuations, which means less noise filtering capabilities in

contrast, and thus a larger BCRB. And second, by noticing

that larger σ2
sp

means more discrepancies between the KF-AR

model and the actual scintillation phase model, thus eventually

degrading the estimation performance.

When scintillation errors lose relevance and the model

discrepancies tend to zero (that is, σ2
sp

→ 0),
√

[

J−1

B

]

4,4

decreases without bound, regardless of the value of β1. This is

because, in this situation, scintillation phase can be perfectly

estimated, and thus it can perfectly be subtracted from the in-

put signal, consequently improving the estimation performance

of the dynamics phase. This is equivalent to a scintillation-free

situation, where the KF-AR becomes a standard KF that only

deals with dynamics phase, and thus the corresponding root

BCRB attains

√

[

J̃−1

B

]

1,1
, which exhibits a floor saturation

effect due to the presence of non-zero dynamics process noise

[12] denoting discrepancies in the Kalman model. This latter

behaviour can be understood as the KF with an equivalent loop

bandwidth large enough to keep the filter aware of possible
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Fig. 1: Carrier dynamics and scintillation phase root BCRB as

a function of β1 and σ2
sp

.
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Fig. 2: (Top) Carrier dynamics and (bottom) scintillation phase

root BCRB as a function of σ2
sp

, for different AR model orders.

variations in the input carrier phase dynamics that, conversely,

poses a limit on the estimation performance.

B. BCRB as a Function of AR Model Order

We now evaluate the impact of the AR model order onto the

BCRB. For the same environmental conditions as in figure 1,

figure 2 shows the the root BCRBs
√

[

J−1

B

]

1,1
and

√

[

J−1

B

]

4,4

considering different AR model orders, from 1 to 3. As can

be observed, whereas using higher model orders may provide

a better fit of the AR models to correlated scintillation phase

fluctuations, their impact on the best achievable performance

is practically non-existent, as long as the sum of the {βk}
p
k=1

coefficients is the same for all model orders. The sum of the

coefficients must be smaller than 1 to ensure that the filter is

stable. In figure 2, it is considered that
∑p

k=1 βk = 0.95. If

the sum of the βp coefficients differs from 0.95, the BCRB

follows the fashion of previous figure 1.

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on May 02,2022 at 15:28:47 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: 3-D plot depicting dynamics phase root BCRB as a

function of σ2
sp

and C/N0.

C. BCRB as a Function of C/N0

We now extend the analysis to contemplate multiple C/N0

conditions, depicting from open-sky environments to urban

scenarios with obstacles degrading signal reception. Figure 3

shows a two-dimensional analysis of
√

[

J−1

B

]

1,1
as a function

of σ2
sp

and the C/N0. As expected, for very small values of σ2
sp

(i.e. in the absence of scintillation), the BCRB depends fully

on the C/N0, as the KF-AR resembles a standard, non-AR

KF, and the phase jitter decreases for larger C/N0. As σ2
sp

in-

creases, the BCRB also starts increasing, as already explained

in figure 1. Here, a higher scintillation noise induces higher

errors in the estimated scintillation, with the BCRB diverging

from
[

J̃−1

B

]

1,1
. However, as C/N0 decreases, scintillation has

to be more powerful (i.e. larger σ2
sp

) to start dominating over

noise on the dynamics phase.
This latter phenomenon leads one to think that, when

working at low C/N0, AWGN produces a masking effect

over scintillation, meaning that scintillation falls below the

noise level, and the dynamics phase is dependent only on the

effect of AWGN. This is applicable when
√

[

J−1

B

]

1,1
remains

flat when moving along σ2
sp

for a fixed value of C/N0.

As previously stated, this is equivalent to a scintillation-free

situation. On the other hand, scintillation is the predominant

effect over measurement noise when
√

[

J−1

B

]

1,1
remains flat

when moving along the C/N0 for a fixed value of σ2
sp

. In

figure 3, the black striped line illustrates the boundary between

AWGN predominance and scintillation predominance.

D. Coupling between Dynamics and Scintillation Phases

The particularity of the KF-AR is that it estimates not only

the carrier phase dynamics, but also the fluctuating scintillation

phase. Hence, depending on the working conditions, both esti-

mates are coupled to more or less extent. That is, the estimates

of dynamics phase are limited by the errors in the estimation

of scintillation phase. In contrast to the input measurement

noise, which is aimed to be filtered out, the scintillation phase
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Fig. 4: Coupling factor between dynamics phase and scintil-

lation phase as a function of σ2
sp

and C/N0.

is a noise-like disturbance aimed to be estimated, and thus the

estimates will inevitably present some error. As a consequence,

a portion of scintillation phase remains after mitigation, which

eventually propagates to the estimated dynamics phase.

This phenomenon can readily be inferred from figure 1. In

there,
[

J−1

B

]

4,4
increases linearly as the scintillation prediction

noise also increases. However, the point when
[

J−1

B

]

1,1
starts

diverging from
[

J̃−1

B

]

1,1
coincides with a change in the slope

of
[

J−1

B

]

4,4
. At this point, scintillation phase starts having an

impact onto
[

J−1

B

]

1,1
. The estimation of user phase and scin-

tillation phase starts being coupled, and this effect increases

until the user phase performance is fully captured by
[

J−1

B

]

4,4
.

The effect can also be observed in figure 3. Dynamics phase

and scintillation phase start being coupled above the black

striped line, which coincides with the point that determines

when ionospheric scintillation is predominant over AWGN. As

the C/N0 decreases, a larger σ2
sp

is needed for scintillation to

predominate over noise, for the coupling effect to take place.

On the other hand, figure 4 depicts the coupling factor between

dynamics phase and scintillation phase, determined as the ratio

between the cross-covariance and dynamics phase estimation

variance elements in the steady-state covariance matrix of the

state estimate. That is, [Σx (n→ ∞)]
4,1
/ [Σx (n→ ∞)]

1,1
. The

coupling factor is valued between 0 meaning no coupling at

all, and 1 meaning full coupling between the estimates of

both magnitudes. As can be observed, the black striped line in

figure 3 coincides with the point in figure 4 when the coupling

factor starts augmenting. Hence, the same conclusion can be

extracted from figure 4. For high C/N0, dynamics phase and

scintillation phase estimates start being coupled at very small

σ2
sp

, whereas for low C/N0, the scintillation prediction error

σ2
sp

has to be larger for this to occur.

IV. BENEFITS OF ADAPTIVE KF-AR TECHNIQUES

The objective of this section is twofold. On the one hand,

to show the importance of employing adaptive KF-AR imple-

mentations to deal with time-varying working conditions in a
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realistic environment. On the other hand, to use the BCRB tool

to evaluate the expected behaviour of such techniques under

different scintillation intensities, namely moderate and severe,

and received signal conditions. To this end, we will focus on

the adaptive approach introduced in [6], the termed AHL-

KF-A2R(p), where the authors of this work proposed three

independent adaptive implementations. First, a real-time esti-

mation of the AR model parameters, {βk}
p
k=1 and σ2

sp
, using

the Yule-Walker equations [11] in an online manner. Second, a

real-time estimation of the optimal AR model order using the

minimum description length (MDL) criterion [14]. And third,

an adaptive, hard-limited (AHL) Kalman measurement noise

variance based on actual C/N0 measurements to deal with the

non-linear signal amplitude fades introduced by scintillation,

particularly severe scintillation. The beauty of this approach is

not only that it exploits the information on the actual C/N0,

but also that it establishes a C/N0 threshold below which the

KF-AR is forced to disconnect the input measurements. By

doing so, the Kalman filter is protected from abnormal deep

fades in the C/N0, and relies only on its internal state-space

model until the C/N0 recovers to nominal conditions. In this

work, the threshold is set to C/N0 = 25 dB-Hz.

A. Cornell Scintillation Model

In the sequel, we will consider a class of scintillation data

generated through the so-called Cornell Scintillation Model

(CSM). It synthesizes scintillation time series using an index

S4 as an indicator of scintillation intensity, and τ0 as the

decorrelation time of consecutive scintillation samples [5]. As

a rule of thumb, the larger S4 and smaller τ0, the more se-

vere scintillation. For moderate scintillation, we will consider

{S4 = 0.5, τ0 = 0.8 s}, leading to a scintillation phase

with standard deviation σψ = 0.3 rad, whereas for severe

scintillation, we will consider {S4 = 0.8, τ0 = 0.4 s}, leading

to a scintillation phase with standard deviation σψ = 0.8 rad.

B. Seeking KF-AR Optimal Performance

We start the analysis by focusing on the presence of CSM

severe scintillation as the most critical situation faced by a

GNSS receiver. In that sense, the top plot of figure 5 depicts

the operational range of non-AHL and AHL adaptive KF-

AR techniques in terms of
√

[

J−1

B

]

1,1
and

√

[

J−1

B

]

4,4
, as a

function of the nominal C/N0. The figure also includes the

empirical root mean square error (RMSE) of 100 Monte Carlo

realizations of the techniques. This is done in order to evaluate

the goodness of each technique in terms of the closeness to the

BCRB. On the other hand, the bottom plot of figure 5 shows

the empirical probability of losing track of the signal.

As the interest lies in tracking carrier phase dynamics,

in this analysis we will mainly focus on the carrier phase

dynamics estimation performance. It can be seen that the

RMSE of the KF-A2R(p) technique follows the shape of
√

[

J−1

B

]

1,1
, although it presents some gap. Such effect is

caused by the presence of deep fades under severe scintillation

conditions, which are not dealt with by the KF-A2R(p), thus

preventing the dynamics phase RMSE from attaining optimal

performance. The deep fades also have an impact on the

probability of loss-of-lock. The effect of higher loss-of-lock
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10
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10
0

(r
a

d
)

0 5 10 15 20 25 30 35 40 45 50
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0.5
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1

Fig. 5: (Top) Root BCRB and empirical RMSE of KF-AR

techniques as a function of C/N0. (Bottom) probability of

loss-of-lock.

for larger C/N0 is caused by the fact that, when AWGN

becomes more negligible, the deep fades become more relevant

to the KF. On the other hand, at high C/N0, the dynamics

phase and scintillation phase RMSE present very similar

values, due to the high coupling under these conditions.

The AHL-KF-A2R(p) presents smaller operational range

than the non-AHL technique (C/N0 of 25 dB-Hz against 15

dB-Hz), which is due to the hard-limiting threshold itself.

Nonetheless, the AHL condition is shown to provide attractive

advantages. First, the dynamics phase RMSE is smaller than in

the KF-A2R(p) and fully reaches the performance lower bound

given by the BCRB. This is because the BCRB accounts for

nominal C/N0 values, in an ideal situation with no signal

power fades. Therefore, the AHL implementation filters such

fades and counteracts their effect onto the effective C/N0,

thus eventually attaining optimal performance. And second,

the AHL-KF-A2R(p) benefits from a significantly smaller

probability of loss-of-lock, thus ensuring service availability

under severe scintillation conditions.

In the top plot of figure 5,
[

J−1

B

]

1,1
exhibits a valley effect at

C/N0 around 15 dB-Hz. In line with the previous conclusions,

AWGN is the predominant effect in these circumstances,

and thus the BCRB decreases as the C/N0 increases until

15 dB-Hz. Then, at C/N0 ≥ 15 dB-Hz, scintillation starts

gradually gaining relevance over noise, thus being beneficial

for the estimation of scintillation as
[

J−1

B

]

4,4
decreases until

stabilizing above 30 dB-Hz. At this point, the scintillation

phase BCRB experiences a floor saturation effect, which is

conceptually similar to that with dynamics given by
[

J̃−1

B

]

1,1
.

However, the coupling effect is again observed to impact onto
[

J−1

B

]

1,1
, as the latter increases along with the C/N0, above 15

dB-Hz, and the estimation performance is eventually captured

by the errors in the estimated scintillation phase. In addition,

the probability of loss-of-lock degrades as well when deep

fades start rising above the noise level in the KF-A2R(p),
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where these are not filtered. Based on these observations, the

importance of using the AHL implementation is concluded.

C. Importance of Using Adaptive KF-AR Techniques

Once confirmed that the AHL-KF-A2R(p) can attain opti-

mal performance, we can make use of the BCRB tool to stand

out the importance of using adaptive KF-AR implementations

over fixed ones. In that sense, figure 6 compares the term
√

[

J−1

B

]

1,1
between a KF-AR with fixed parameters and the

AHL-KF-A2R(p), for both CSM moderate and severe scintil-

lation. The root BCRB of the AHL-KF-A2R(p) corresponds to

that already depicted in figure 5. For the sake of completeness,

figure 6 also depicts the best achievable performance that

would be attained by conventional PLLs in the presence of

ionospheric scintillation.

The outperformance of adaptive techniques is confirmed un-

der both moderate and severe scintillation, particularly if com-

pared to the expected PLL performance, which is ultimately

limited by the standard deviation of the scintillation time series

under study as it estimates scintillation phase as part of the user

dynamics. At low-to-mid C/N0, in the range of [10, 30] dB-

Hz, the shape of the KF-AR BCRB is quite different between

fixed and adaptive. In this range of C/N0, the root BCRB is

smaller in the case of adaptive KF-AR implementations, with

an improvement of 0.15 rad to below 0.1 rad for moderate

scintillation, and 0.25 rad to 0.1 rad for severe scintillation.

This behaviour stands out the fact that, when AWGN is the

predominant effect over scintillation, not only there is no need

for the KF-AR to activate the AR part, but doing so even

becomes harmful to the estimation performance. That is, using

the AR module unnecessarily in the KF-AR incurs in some

performance degradation as scintillation gradually falls below

the noise level. In contrast, the adaptive implementations of the

AHL-KF-A2R(p) technique automatically disable the AR part

when not needed, either by estimating zero AR coefficients or

by readily introducing a zero-th AR model order. Based on

these observations, the importance of using adaptive KF-AR

implementations over fixed ones is concluded.

V. CONCLUSION

This paper has provided a deep insight into the performance

of GNSS carrier tracking under the presence of ionospheric

scintillation using KF-AR techniques. Two main contributions

have been made. First, a qualitative analysis on the interplay

of the KF-AR modeling parameters and signal reception

conditions playing a key role in the estimation performance of

carrier phase dynamics. The BCRB has revealed a coupling

effect by which the dynamics phase estimation is limited by

the errors in the estimated scintillation phase, although clearly

outperforming conventional PLLs. And second, we have con-

firmed the importance of using adaptive KF-AR techniques to

attain optimal performance under stringent working conditions

by self-adjusting the AR module when AWGN gradually gains

relevance. The AHL has proven to become of paramount

importance to counteract the deep fades introduced by scintil-

lation. The work presented in this paper has been intended to

serve as a useful guideline for a better understanding on the

behaviour of the KF-AR in realistic environments.
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Fig. 6: Best achievable dynamics phase estimation perfor-

mance when using a fixed KF-AR implementation versus the

adaptive AHL-KF-A2R(p) versus conventional PLL.
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