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Abstract—During the past few decades, the use of global
navigation satellite systems (GNSSs) has become the primary and
sometimes only way of providing a positioning, navigation, and
timing (PNT) solution for many outdoor applications. Further-
more, GNSS is playing an important role on the development
of smart cities and Internet of things (IoT) applications. For
this reason, seamless navigation has become very crucial for
numerous PNT-dependent applications. Unfortunately, GNSS is
a technology that is vulnerable to several threats. All these
ingredients boil down to the need for alternative PNT solutions
to backup GNSS in case of miss performance or denial of
service. The use of low earth orbit (LEO) constellations has been
considered in the literature to provide global solution, but more
importantly because it will bring some benefits with respect to
medium earth orbit (MEO); which is the constellation used in
GNSS. Based on these considerations, in this paper we focus
on the design of a new PNT signal for LEO constellations.
Furthermore, a comprehensive performance analysis is carried
out with the aim of reducing the receiver complexity. For that,
a chirp spread spectrum signal design is considered.

Index Terms—LEO constellation, Alternative PNT, Chirp
Spread Spectrum, GNSS, low-complexity

I. INTRODUCTION

During the past few decades, the presence of global nav-
igation satellite systems (GNSSs) has facilitated positioning,
navigation and timing (PNT) for various outdoor applications
of our daily life [1]. Furthermore, GNSS is playing an impor-
tant role in today’s smart cities and the futuristic internet-of-
things (IoT) [2]. As a matter of fact, seamless navigation has
become very crucial for numerous PNT-dependent applications
in sensitive fields such as safety and industrial applications.
Unfortunately, GNSS signals suffer deterioration due to mul-
tipath fading and attenuation in many situations. This is further
aggravated by the fact that GNSSs broadcast signals from
satellites in medium earth orbit (MEO), resulting in very
low received signal power. This makes GNSS vulnerable to
intentional and unintentional interference [3]. In this sense,
there is a need to think differently about the provision of
PNT to critical applications and to consider innovative ways
to achieve resilient PNT.

To alleviate these issues, the community trend is to retain
GNSS as the backbone PNT but reducing the vulnerabilities of
GNSS by using complementary PNT solutions [3], [4]. Among
these alternative solutions, multi-sensor fusion technology has
become very vital in seamless navigation systems owing to
its complementary capabilities to GNSSs [4]. The main draw-
back of this solution is that they are platform/sensor specific
devices, thus limiting the market segment. Other solutions
are based on terrestrial radio-frequency signals for which
there are mature and commercially available technologies to
backup GNSS [3]. However, none of the available solutions
can provide a universal backup to GNSS. This is the same for
aeronautical radionavigation systems such as VOR, DME and
TACAN [5]. Finally, communication signals (e.g., LTE/5G,
WiFi, Bluetooth) have been used as signals of opportunity
(SoO) for PNT [6]. Nevertheless, they have the same coverage
limitation as terrestrial PNT systems. This scene raises the
need of a novel complementarity PNT solution that can backup
GNSS worldwide any time.

For this end, in the last years, the use of low earth orbit
(LEO) satellites for an alternative PNT solution has been
investigated [7]. In this sense, one of the key potential aspects
to exploit for GNSS complementarity is the space segment
represented by LEOs. A proof of that is the extended list of
LEO satellite constellations for broadband internet services or
IoT connectivity launched in the last few years [8]. For the
PNT sector, in contrast to alternative PNT terrestrial solutions,
the use of a LEO constellation will give the advantage of pro-
viding everywhere connectivity due to the satellite coverage.
With respect to MEO constellations, LEO constellations will
bring frequency diversity (allowing for interference detection),
improvement on the geometry (yielding lower dilution of
precission and better performance), and they will provide
significantly more powerful signals [9]–[14].

A. LEO PNT system

In this paper, we place the focus on LEO-PNT. A proof
of the novelty and scientific interest on LEO-PNT for GNSS
complementarity is the publication in Fall 2021 of the first
PNT results obtained from the Starlink LEO constellation [9].978-1-6654-1616-0/22/$31.00 ©2022 IEEE



This will of course open a new era of alternative PNT solutions
based on SoO from LEO constellations, which is confirmed
with a similar publication the same year from another research
group [12]. Nevertheless, there are still several challenges that
need to be solved. The main limitation is the signal design
of current LEO constellations, which are mainly designed
for communication purposes. This makes GNSS-like measure-
ments from LEO to be inaccurate [11]. This is unfortunate
because a proper measurement accuracy would provide a very
accurate PNT solution thanks to the fantastic GDOP we find
in LEO constellations.

The issue can be solved by transmitting a properly designed
PNT signal from the LEO satellites. In other words, we should
design an alternative LEO PNT system. This is something that
has attracted the commercial interest and today it is a reality by
the development of the Xona Space System company [13]. The
main drawback of an alternative LEO PNT system is the big
infrastructure and effort cost to develop the whole system. One
of the most important tasks of such a system is to define the
transmitted signal from the satellites, and this will be the focus
of this paper. The design of the constellation size, satellite
payload and any system design are out of the scope of this
paper.

For the signal design, we might adopt the same structure as
in GNSS; that is a direct sequence spread spectrum (DSSS)
signal. Nevertheless, the acquisition of DSSS signals in LEO
constellations may be prohibitive for IoT devices, thus limiting
the market segment. The reason is that the high dynamic in
LEO constellations will produce a large search space for the
acquisition process [14]. One alternative with lower acquisition
complexity in LEO can be based on a chirp spread spectrum
(CSS) signal. As shown in [14], improvements in terms of
complexity from 1 up to 2 orders of magnitude can be obtained
using CSS with respect to DSSS.

B. Contribution

Motivated by the reduction of CSS complexity, we will
complete the design of the CSS signal in [14] for an alternative
LEO PNT solution targeting a complexity optimization. To do
so, we first need to analyze the performance of the CSS signal
in terms of different figures of merit (FoMs) that have a direct
inpact on the receiver processing complexity. These FoMs
are related with the acquisition sensitivity, the multi-satellite
interference (MSI) and the accuracy. These are the main FoMs
useful to obtain the ultimate optimization of the complexity. To
achieve this target, we provide in this paper a comprehensive
analysis of the FoMs of the considered CSS signal. This
analysis is done for different simulation parameters involved
in the design of a PNT signal such as the signal bandwidth,
carrier-to-noise ratio (CN0). Then, based on this parametrical
analysis of the CSS signal performance, we provide guidelines
for the design of a LEO-PNT signal targeting the optimization
of the receiver processing complexity.

Therefore, the contribution of this paper is twofold. First,
we provide a comprehensive performance analysis of the CSS
signal in terms of FoMs useful for the design of a PNT

signal. Second, we provide signal design guidelines for a low-
complexity LEO PNT signal. To do so, the rest of the paper
is structured as follows: In Section II we provide the basis for
the CSS signal analysis. Next, Section III provides the detailed
performance analysis based on the FoMs of a PNT signal.
Finally, Section IV concludes the paper by giving a summary
of the parametrical performance analysis and providing the
guidelines for the CSS signal design targeting the complexity
optimization.

II. SIGNAL ANALYSIS SETTING

In this section we introduce the main parameters useful to
undestand the performance analysis of the CSS signal carried
out in this paper. More specifically, we first describe the signal
model of the CSS signal studied in this paper. Then, we
introduce the study logic followed in this paper to optimize
the complexity as well as the definition of the performance
metrics to be analyzed.

A. CSS signal model
Chirp spread spectrum (CSS) signals are frequency modu-

lated waveforms that sweep their frequency whithin the signal
bandwidth B during the chirp duration (or period) Tc. In
this paper, we consider linear chirps, which are completely
characterized by the chirp rate (or slope)

µ
.
=
B

Tc
. (1)

In practice, when considering the presence of both time-delay,
τ , and frequency Doppler, fD, due to propagation, we need the
transmission of two chirp components; one with positive slope
and another with negative slope [14]. As explained in [14],
this is needed for the proper estimation of the pair {τ, fD},
otherwise both parameters are coupled in the chirp frequency
and they cannot be separated. This signal structure will be
referred as to the BOK-chirp. It is important to note that the
data transmission is out of the scope of this paper. We consider
that data transmission is obtained with other component or in
an additional time-slot as considered in [14].

With the previous setting, we consider the transmission of
different BOK-chirp signals from the different satellites in the
constellation. So, the following signal is received

r(t) =

Nvis∑
i=1

si(t− τi)ej2πf
(i)
D (t−τi), (2)

where Nvis is the number of visible satellites and
{si(t), τi, f (i)D }, with i = 1, 2, . . . , Nvis, the transmited BOK-
chirp signal, time-delay and Doppler frequency of the i-
th satellite, respectively. For the generation of the different
signal waveforms we use the multi-dual slope (MDS) scheme
proposed in [14]. This scheme assign two different chirp rates
for every satellite in a way that each satellite’s signal mantains
the same frequency periodicity. To do so, in a constellation
with a total of Nsat satellites we have:

µ
(1)
i = i

2µ

Nsat
,

µ
(2)
i = 2µ− µ(1)

i ,

(3)
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Fig. 1. MDS acquisition block for one channel (i.e., satellite).

with i = 1, 2, . . . , Nsat and the transmitted signal for the i-th
satellite given by

si(t) =

A cos
(
πmod

[
µ
(1)
i t
]
B
t
)
, t ≤ Tc

2

A cos
(
π
(
θ0 + mod

[
µ
(1)
i t
]
B
t
))

, Tc

2 < t ≤ Tc
,

(4)
with mod [x]B the modulus B operator of x, A =

√
2Ps, Ps

the received signal power, and θ0 = (µ
(2)
i − µ

(1)
i )Tc/2.

The acquisition module for this received signal is shown
in Fig. 1. It consists of a total of 4 de-chirp processes, each
process composed of a local replica multiplication and further
FFT computation. These de-chirps can be divided on the up-
and down-chirp branches, which use the negative and positive
slopes for the local replica, respectively. Then, each branch has
two de-chirps corresponding to the two slopes for each satellite
in the MDS scheme. For the signal acquisition, we take the
maximum of the (squared absolute value) FFT and we sum the
values of the 4 de-chirps together. The result is compared with
a threshold to declare the presence or absence of the satellite
for which the de-chirp is performed. The block shown in Fig. 1
must be repeated for every satellite in the constellation. The
process used to select the detection threshold is based on the
definition of the probabilities of detection (PD) and false alarm
(PFA). A similar de-chirp-based architecture is applied for
parameter estimation as given in [14].

B. Study logic

Let us introduce the study logic for the performance analysis
and signal design of the MDS signal. This analysis and design
target the minimization of the receiver complexity needed to
process the MDS signal. To do so, we would like to have
the shortest chirp period possible. Unfortunately, we must fix
a large chirp period enough to satisfy different requirements
in terms of sensitivity, accuracy or MSI. For this reason, the
ultimate chirp period design is driven by the main outcomes
of the performance assessment carried out in this paper. The
FoMs that will drive our analysis are

• The sensitivity target: minimum CN0 needed to obtain
PD > 0.9 with PFA = 10−5.

• The level of MSI.

Sensitivity Tc

MSI

Complexity

Accuracy RMSE

# ops.

B

CN0

Fig. 2. Study logic followed in the detailed parametrical analysis to be carried
out in this paper.

• The accuracy of the time-delay and Doppler estimates.
• The signal processing complexity.

All these FoMs will be evaluated as a function of different
variables such as CN0, time-delay spread, Nsat and Nvis in
a LEO constellation. Figure 2 shows the study logic we will
follow for the detailed analysis of the CSS signal.

Since the target design is the complexity, we will look for
the minimum chirp period (Tc) that provides the target sensi-
tivity for the given parameters B, CN0, Nsat and Nvis. Then,
with this chirp period and the same parameters, we compute
the complexity and the MSI. Once we have the minimum chirp
period and its corresponding MSI, we evaluate the accuracy
of the given configuration. Before entering into the detailed
analysis of the MDS signal following the introduced study
logic, let us first give the fundamental definitions needed to
understand the analyses carried out in the following sections.

Sensitivity performance
The value of the detection threshold used in the acquisition

module of the MDS receiver is configured to provide certain
acquisition performance for each satellite. This performance is
characterized by the PFA and PD of the acquisition module.
In particular, the detection threshold is fixed to provide the
sensitivity target performance defined with a PD≥ 0.9 when
PFA= 10−5. This is the target sensitivity performance, which
of course will be dependent on the signal parameters (i.e.,
Tc and B) as well as system parameters such as the CN0,
Nsat and Nvis. For the sensitivity analysis to be carried out in
Section III, we obtain the value of the detection threshold nu-
merically. This threshold is then used to get the PD we obtain
when PFA= 10−5. This process is repeated for every CN0.
The PD is also numerically computed with the generation of
104 Monte-Carlo realizations of the acquisition process using
the previously computed threshold. The computation of the
PD is based on the numerical counting of the realizations for
which the acquisition variable exceeds the threshold.

Multi-Satellite interference (MSI)
One important aspect in the design of a PNT signal is the

multiple access of several satellites.The multiple access for the
considered MDS signal is based on the use of different chirp
rates for different satellites. The scheme chosen to assign the
different chirp rates is intended to build a set of mutually
orthogonal chirp-based waveforms. Of course, when the num-
ber of satellites increases (with a fixed total bandwidth) the
orthogonality between satellites may be compromised, thus
leading to a degradation in performance.

To quantify the orthogonality between users, we compute
the power excess due to interference between users. To do so,



let us develop the received signal power as

Pr =
1

Tc

∫ Tc

0

|r(t)|2 dt = NvisPs (1 + ΩMSI) , (5)

in which we have considered equal power for all received
signals, given by Ps. The term ΩMSI denotes the normalized
power excess due to the interference between BOK-chirps of
different satellites. Specifically, we define the MSI as

MSI
.
=

1

1 + ΩMSI
→ MSIdB

.
= −10 log

(
Pr

NvisPs

)
. (6)

This factor corresponds to a degradation of the CN0, which
in turn is translated into a degradation of the MDS signal
performance. The analysis of the MSI is useful to fix some
limits on the degradation of the accuracy performance due to
the interference between satellites.

Ranging accuracy
For the evaluation of the accuracy on the time-delay and

Doppler estimates, we base on the root mean squared error
(RMSE) of these estimates. For that, we based on the CRLB
of a the MDS signal. Without entering into details, based on
the definition of the CRLB [15] when considering a sampling
rate Fs = B, we get the following result for the CRLB of the
time-delay estimation of a CSS signal:

CRLBτ =
6

(2π)2CN0 ·B2Tc
. (7)

It is important to note that this is the CRLB for a BOK-chirp
signal. When considering the accuracy of the MDS signal,
we have to consider the reception of signals from different
satellites. This causes a degradation on the accuracy due to
the MSI given by

CRLB(MDS)
τ =

6

(2π)2CN0 ·MSI ·B2Tc
, (8)

with MSI given by (6). Equation (8) will be the cornestone to
bound the accuracy performance of the MDS signal in Sec-
tion III, and it will be of paramount importance to consolidate
the signal design provided in Section IV.

Signal processing complexity
We consider in this paper the complexity of the acquisition

process for the MDS signal. The acquisition is composed of
4 de-chirp processes (see Fig. 1), each of them based on a
fast Fourier transform (FFT) of the product of the received
signal with the local replica. Each FFT is based on a signal
of Ñ = BTc samples. Nevertheless, for a more effective FFT
computation we will choose the next power of 2 of Ñ , given
by N = 2nextpow2(Ñ).

Doing so, the complexity of the FFT is given by N log2(N)
[16]. Therefore, summing up, the complexity of the acquisition
process for the MDS-based CSS signal is

C .
= 4N log2 (N) . (9)

We will base on this formula in order to compute the number
of operations (i.e. complexity) to acquire the CSS signal. For
number of operations we consider the number of complex ad-
ditions followed by a multiplication. We also want to highlight

that this is the complexity needed to acquire 1 satellite with
the MDS slope. The same operations have to be repeated for
each satellite in the constellation. The previous formula may
be useful to get an indication of the level of complexity of
the algorithm. We should not take this measure as an exact
measure of the complexity, but it is perfect for comparison
purposes.

III. PERFORMANCE ANALYSIS

This section reports the results of the parametrical analysis
of the considered MDS signal following the study logic
shown in Fig. 2. So, in the following sub-sections we show
the analysis of the different FoMs considered in this paper,
bringing light to consolidated design of the MDS signal.

A. Sensitivity analysis

Let us start with the analysis of the sensitivity performance
of the MDS signal. To do so, we analyze the acquisition
module shown in Fig. 1 and we perform a parametrical
analysis of the sensitivity performance. The main target of
this section is to find the minimum chirp period that provides
the target sensitivity performance for different values of CN0,
Nsat and Nvis. For the target performance we consider a PD
> 0.9 for PFA = 10−5. Then, with this target performance
we follow an iterative approach based on the following steps
to obtain the minimum chirp period:

1) Perform the analysis of the PFA to get the detection
threhsold that provides PFA = 10−5. The analysis is
performed for a randomly chosen satellite.

2) Perform the analysis of the PD for the given satellite
and random interference. That is, we consider Nvis

satellites. The same satellite as in Step 1 is considered
as the desired satellite. Then, for each Monte-Carlo run
we generate Nvis − 1 random satellites considered as
interferences. We compute the PD based on the threshold
obtained in Step 1 with 104 Monte-Carlo runs.

3) If PD< 0.9, increase the chirp period Tc. If PD> 0.95,
we decrease Tc. In both cases, return to Step 1. Oth-
erwise, we end the iterative process and define the
minimum chirp period as the last evaluated Tc (i.e., in
the last iteration giving 0.9 <PD< 0.95).

This is repeated for all the simulated parameters (i.e.,
B,Nsat, Nvis).

Before entering into details on the results, we would like
to highlight that the effect of {Nsat, Nvis} on the sensitivity
results is neggligible in terms of chirp period for the range of
CN0 (i.e., [35,50] dB-Hz) and B (i.e., [5,20] MHz) considered
in this paper. The reson for these results will become apparent
when analyzing the MSI in Section III-B. For this reason, for
the following simulations if not stated otherwise we will use
Nsat = 50 satellites and Nvis = 5. Then, we place the focus
on the trend of the minimum Tc as a function of the CN0. This
is an important analysis since it provide us a way to design
the chirp period depending on the target CN0. An example of
this analysis is given in Fig. 3 in the range of 35 to 50 dB-Hz
and different bandwidths. These values of CN0 are relevant
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for the study of LEO constellations, since their are significant
for the path loss experienced in such constellations.

As expected, the highest CN0 value the shortest chirp period
needed to get the target sensitivity performance. Specifically,
a chirp period on the order of 20 ms is needed for 35 dB-Hz,
but 0.6 ms are enough for 50 dB-Hz. Regarding the bandwidth
dependence, we see that for high CN0 (i.e., 45 – 50 dB-
Hz) the minimum chirp period is similar for all the simulated
bandwidths in the range of 5 to 20 MHz, but for B = 1 MHz
the minimum chirp period is larger than for B > 5 MHz. On
the other hand, for low CN0 (i.e., 35 – 40 dB-Hz) we get a
larger chirp period for larger bandwidths. The reason is related
with the number of samples needed to average the noise and
allow the proper acquisition. The number of samples in a chirp
period is given by the product Tc ·B. Finally, it is important to
note that simulations have been performed for different time-
delay and Doppler spread relevant in LEO constellation (see
[14]). The results we obtained are the same for different values.
So, we conclude that for the given MDS signal design the
effect of the time-delay and Doppler spread is negligible for
the sensitivity analysis carried out in this paper.

B. MSI analysis

The objective of this section is to quantify the MSI of the
MDS signal. To do so, as done for the sensitivity analysis, we
consider a constellation size of Nsat satellites and we analyze
the MSI for a given set of Nvis visible satellites. It is expected
(and confirmed with the analysis) that the MSI depends on
the visible satellites, both on the number of visible satellites,
Nvis, and the set of visible satellites. For this reason, we will
obtain the MUI as defined in (6) for all the satellites in the
constellation and for different sets of visible satellites. For the
sake of time consumption of the simulations, we considered
100 different and random sets of visible satellites. Then, we get
100 realizations of different MSI values (considering different
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Fig. 4. Multi-Satellite interference of a MDS signal with Tc = 0.6 ms as a
function of Nvis for different bandwidths and Nsat values.

sets of visible satellites) for each satellite in the constellation,
and we analyze the results.

One of such analyses is the dependence of the MSI with the
number of visible satellites, Nvis. The results for Nvis ∈ [2, 50]
and Nsat = {50, 100} satellites for different bandwidths
values and Tc = 0.6 ms are shown in Fig. 4. We see similar
values for different Nsat values, but it strongly depends on
the number of visible satellites. This behaviour is for any
simulated Tc (although not shown) and bandwidth, so that
we can conclude that the effects of the constellation size,
Nsat, are negligible in terms of MSI. Indeed, the maximum
difference between the MSI value obtained with Nsat = 50
or Nsat = 100 is less than 0.2dB. In absolute terms, the
maximum MSI value for Nvis < 20 is around 3.5 dB for
1 MHz, but it can reach up to more than 6 dB for Nvis = 50.
If we increase the bandwidth up to 20 MHz, the MSI values
are reduced up to the order of 1 dB for any Nvis < 50.

Finally, to conclude the analysis of Fig. 4, it is important
to note that if Nvis is reduced to 5 satellites (i.e., a common
number for LEO constelations), the MSI is < 1.5 dB for all the
simulated Tc and bandwidth values. These values for the MSI
are small values and they are the reason that the variation of
the constellation size and visible satellites on the sensitivity
analysis (see Section III-A) is negligible. We have to take
into account that the only difference on the sensitivity analysis
when varying Nsat or Nvis is the MSI. Since we obtain low
MSI values for the simulated parameters, the effects on the
sensitivity are negligible. These are good conclusions, but for
the design of a PNT signal we have seen that to have an
accurate acquisition process, we are not free when fixing Tc
for a given bandwidth and CN0 value (see Fig. 3). Therefore,
we are not completely free to choose the number of samples
N = Tc ·B.

Actually, if we want to get the target sensitivity perfor-
mance, and the minimum chirp period is chosen, the number of
samples is fixed to the minimum number of samples needed



to achieve target performance. It is for this reason that we
analyze the MSI when considering the minimum chirp period
to get sensitivity performance. To do so, we follow the next
approach:

1) Get the minimum Tc for a given bandwidth and CN0
value, as done in Section III-A,

2) Compute the corresponding MSI for given bandwidth
and minimum Tc,

3) Analyze the obtained MSI as a function of the given
CN0.

This analysis is of paramount importance to bound the MSI
values we obtain when designing the chirp period to achieve
the target sensitivity performance. It will be also very impor-
tant for the accuracy analysis to be carried out in Section III-C.
A general conclusion for this analysis is that for a given
bandwidth, the MSI increases as the CN0 increases (equivalent
to decrease the Tc). From these results we obtained that for
Nvis = 5 the maximum MSI value we get in the simulations
is < 0.55 dB for all the considered bandwidths. The minimum
value we obtain is around 0.05 dB. For Nsat = 20 satellites,
we get MSI values < 1.5 dB for all the considered bandwidths
in the range of CN0∈ [31, 50] dB-Hz.

The previous quantitative analysis is based on the averaged
MSI, but we know that the instantaneous MSI depends on
the set of visible satellites. That is, among the Nsat possible
satellites, we consider one of them as the desired to be
acquired, then the rest of visible satellites (i.e., Nvis − 1) are
selected randomly. To illustrate this dependency, we analyze
the minimum, maximum and average values of the MSI
among 100 realizations with different (random) set of visible
satellites. For this set of satellites, we consider all the satellites
in the constellation as the desired one, and then for each of
them we obtain the MSI considering Nvis−1 random satellites
(avoiding the desired one). Then, we consider the minimum,
maximum and average values among realizations (set of satel-
lites) and desired satellites. This allows us to fix some bounds
on the MSI values when considering the sensitivity analysis.
The result of this analysis when considering Nsat = 50 and
Nvis = 5 satellites is shown in Fig. 5. A bandwidth of 1
and 20 MHz are considered in the upper and lower plots,
respectively. The results show a maximum MSI < 1.5 dB for
1 MHz and < 0.6 dB for 20 MHz. Intermediate MSI values
can be obtained for different CN0s values, depending on the
set of visible satellites.

C. Accuracy analysis

The accuracy analysis considered in this section is based on
the CRLB of a single chirp, but considering the corresponding
degradation given by the MSI value. Based on the CRLB
defined in (8) we consider a maximum, minimum and average
accuracy value given by the MSI bounding as described in
Section III-B. Furthermore, we consider the corresponding
accuracy when fixing the chirp period as the minimum value
needed to achieve target sensitivity performance. The results
obtained in this section are important to get possible indica-
tions on the design of the MDS signal parameters, in particular
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Fig. 5. Multi-Satellite interference bounding when considering sensitivity
analysis with Nsat = 50 satellites and considering Nvis = 5 visible satellites:
Minimum, maximum and average values among all satellites in constellation
and 100 realizations with different (random) set of visible satellites. (Up)
B = 1 MHz and (down) B = 20 MHz.

for the bandwidth. To obtain these results, we follow again the
three-step procedure:

1) Get minimum Tc for given bandwidth, B, and CN0t to
obtain given sensitivity performance.

2) Get MSI for minimum Tc and B. Consider the mini-
mum, maximum and average values.

3) Get accuracy given by CRLB in (8) for minimum Tc and
B considering CN0 = CN0t −MSI (all in dB units). Get
minimum, maximum and average values corresponding
to the MSI values.

This analysis is a key point to bound the accuracy perfor-
mance of the MDS signal when designing the chirp period to
achieve the target sensitivity performance, and it will be useful
for the ultimate design of the signal bandwidth. The results
for Nsat = 50 and Nvis = 20 satellites is shown in Fig. 6 for
B = {1, 5, 20} MHz. The average and the maximum RMSE
values are given considering the average and maximum MSI
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Fig. 6. Accuracy analysis when considering Tc fixed as the minimum value
needed to get target sensitivity performance.

values. We see accuracies on the order of tens of meters for
B = 1 MHz and CN0 < 40 dB-Hz, but order of meters can be
obtained with the same bandwidth but for CN0 > 40 dB-Hz.
On the other hand, we get accuracies below 5 m for any B ≥ 5
MHz and for all CN0 ≥ 40 dB-Hz. Indeed, we can get below 2
m for B = 20 MHz and CN0 > 40 dB-Hz. Finally, accuracies
below 1 m can be obtained for all simulated B >= 1 MHz and
any CN0 > 45 dB-Hz. These are useful concluding remarks
for a consolidated MDS signal design.

D. Complexity analysis

Finally, let us analyze the MDS receiver complexity based
on (9) and the three step procedure followed throughout this
section to obtain the minimum Tc needed to achieve the target
sensitivity performance. For results showing the dependence
of the complexity with the chirp period we refer to [14].
In this section, we consider the constellation altitude and its
implications on the MDS signal design. For that, we relate the
constelation altitude with the corresponding time-delay span.
Then, we consider a Tc equal to this time-delay span, so that
an unambiguous time can be measured. Doing so, we can
measure the time-delay of any satellite in the constellation
unambiguously. That means that the full pseudorange can be
measured without needing bit and frame synchronization via
the navigation message. That is, we get direct bit synchroniza-
tion when fixing the chirp period to the time-delay spread of
the constellation.

The analysis is based on the comparison of the complexity
when fixing Tc = τamb and that obtained when fixing
Tc < τamb, with τamb the time ambiguity. Then, the increment
on complexity, ∆C, due to extending the chirp period to
Tc = τamb to have an unambiguous time measure is derived.
We consider two CN0 ranges, namely the HIGH and LOW
corresponding to [45, 50] and [35, 40] dB-Hz, respectively.
Then, we use the chirp periods for HIGH and LOW obtained
after the sensitivity analysis (see Section III-A), corresponding

0 5 10 15 20 25

Chirp period (ms)

10
4

10
5

10
6

10
7

10
8

C
o

m
p

le
x
it
y

B = 1 MHz

B = 20 MHz

L

T
L

0 5 10 15 20 25

Chirp period (ms)

10
4

10
5

10
6

10
7

10
8

C
o

m
p

le
x
it
y

B = 1 MHz

B = 20 MHz

H

T
H2

T
H1

Fig. 7. Complexity analysis as a function of the time-ambiguity for a (Up)
HIGH and (Down) LOW CN0 regime.

to Tc ≤ TL = 2.5 ms and Tc ≥ TH = 7.5 ms, respectively.
Then, the time ambiguities corresponding to two LEO constel-
lation altitudes are considered. For a low LEO constellation
at 600 km of altitude we get τL = 7.5 ms and for a high
LEO constellation at 1200 km of altitude we get τH = 10
ms. Note that we related the HIGH regime with the low
LEO constellation and viceversa. The reason is that for a
low LEO we consider more received power than a high LEO
constelation, due to the difference between propagation losses.

This complexity analysis is shown in Fig. 7. In the up-
per plot we see how τL > TL, so fixing Tc = τL will
provide higher complexity than fixing it to TL. For instance,
@B = 20 MHz we get the complexity for TL to be CL <
2·106 and CτL = 9·106. Indeed, we see ∆C = CτL−CL < 4CL
for all simulated bandwidths. Therefore, as long as the bit
synchronization is not performed in less than 4 timeslots, it is
useful to extend the chirp period from TL to τL at the expense
of an increment, ∆C, in the complexity. It is important to note
that 4 timeslots is equivalent to 4 data communication slots.
So, we consider very unlikely to obtain bit synchronization via
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de navigation message in less than 2 data communication slots.
Then, the overall complexity to obtain bit synchronization is
much smaller wen extending the chirp period to be equal to
the time ambiguity for a low LEO constellation (i.e., at 600
km). Otherwise, synchronization via frame synch should be
performed.

For a high LEO constellation (i.e., at 1200 km), we divide
the range of chirp periods in 2 (see lower plot of Fig. 7).
The first one considers TH1 ≤ τH, so that if Tc = τH we get
unambiguous measure and sensitivity performance. This case
is equivalent to the low LEO one and the same conclusions
apply. On the other hand, we have the case when TH2 > τH,
so that if Tc = τH we get an unambiguous time measure,
but we cannot get the target sensitivity performance. So, as a
concluding remark, we see the extension of the chirp period
to the time ambiguity useful for the full range of low LEO
constellation. For a high LEO it is only useful up to Tc =
τH = 10 ms and this will provide target sensitivity up to CN0
3̃9 dB-Hz.

Finally, let us analyze the complexity but when considering
the chirp period fixed to achieve sensitivity performance.
When considering the target sensitivity performance, we can-
not freely fix the chirp period for a given B and CN0. So,
the complexity cannot be reduced without limits. Indeed, the
overall complexity will be driven by the minimum chirp period
we need to achieve target performance. Again, we use the
following 3-step approach:

1) Get minimum Tc needed to achieve target sensitivity
performance for given B and CN0 values.

2) With the minimum Tc, B and Nsat compute the com-
plexity,

3) Plot complexity as a function of CN0 for different B
values.

This analysis is important to bound the complexity when
designing the chirp period to get the target sensitivity per-
formance, and thus it is very useful to optimize a consoli-

dated MDS signal design targeting complexity optimization.
An example of this analysis when considering Nsat = 50
satellites, B = {1, 10, 20} MHz and CN0= [35, 50] dB-Hz
is shown in Fig. 8. As expected, the complexity is reduced by
increasing the CN0 (or decreasing the chirp period) for a fixed
bandwidth. Also, for fixed CN0 (or chirp period), the shorter
the bandwidth the lower complexity. Overall, the maximum
complexity we get when only considering 1 satellite channel
is C ≤ 2 · 107 for B = 20 MHz @ 35 dB-Hz.

IV. CONCLUSION

Let us conclude the paper by giving a summary of the
performance analysis carried out in Section III. Finally, based
on this performance analysis, we provide a consolidated MDS
signal design for LEO constelations. It is important to note that
the target of the analysis and the signal design is the reduction
of receiver processing complexity.

A. Summary of performance analysis

We consider the sensitivity analysis should be the first
analysis to be considered carefuly. The reason is that it is
the cornestone for the design of the chirp period, Tc. We
have considered the analysis of the minimum Tc needed to
achieve the target sensitivity performance: a PD>0.9 for a
PFA= 10−5. Based on this setting and considering LEO
constellations with Nsat = [50, 200] and Nvis = [5, 20]
satellites, we obtain a minimum Tc ∼ 20 ms @ 35 dB-Hz
to 0.6 ms @ 50 dB-Hz. Then, once the chirp period is fixed,
we have to consider the corresponding MSI value for different
bandwidth values. As a general conclusion we can say the
for the range of simulated parameter values, the MSI value
can be considered satisfactory for a PNT signal. The MSI is
bounded at 2 dB when considering the minimum Tc. This
value is something manageable for a PNT signal in which the
accuracy is not the main design target.

For the accuracy analysis of the signal, we have considered
the CRLB in (8). This allows us to bound the accuracy
of the MDS signal when using the minimum Tc. With this
framework, and considering Nvis ≤ 20 satellites (an optimistic
value for LEO), we identify three levels of accuracy:

• Low accuracy: > 5 m for CN0<40 dB-Hz with
B <5 MHz.

• Medium accuracy: < 5 m for CN0≥ 40 dB-Hz with
B ≥ 5 MHz.

• High accuracy: < 1 m for CN0≥ 45 dB-Hz for all
B ≥ 1 MHz.

Finally, once the chirp period and the signal bandwidth
are studied, the number of operation needed to process the
MDS signal has been evaluated. In base of this analysis
and following the study logic considered in this paper a
consolidated MDS signal design can be provided. That is, once
the minimum chirp period is obtained, an initial consideration
of the bandwidth could be taken from the MSI and/or accuracy
analysis. Then, with the aim of optimizing the complexity, the
final bandwidth value can be tuned according to the results
of the complexity analysis. As a general conclusion, we get



2 · 104 ≤ C ≤ 2 · 107 operations (1 satellite channel) for
1 ≤ B ≤ 20 MHz and CN0∈ [35, 50] dB-Hz. It is important
to remark that these values of complexity are much smaller
than the complexity of a DSSS signal in equivalent conditions.
Improvements up to 2 orders of magnitudes are shown in [14].

B. Consolidated signal design

Based on the previous summary of the performance analy-
sis, we provide here a consolidated signal design for a LEO
constallation. The target is to reduce the receiver processing
complexity as much as possible. For this reason, a good use
case for the proposed signal design is the IoT use case. For
this case, we identify two options when selecting the chirp
period to optimize the complexity. These options depend on
the requirements in terms of sensitivity, complexity and data
rate of the use case:

• When data rate and complexity is a requirement with
more priority than sensitivity, we should target the short-
est chirp period possible. This is done in terms of the
target in terms of CN0 (e.g., 40 dB-Hz). Then, we fix
the chirp period as the minimum needed to get sensitivity
performance at such CN0 (e.g., Tc ∼ 7.5 ms, depends on
bandwidth). This could be a case in which the IoT device
is not connected and it needs a relatively high data rate
to demodulate data information (e.g., ephemeris).

• When data rate is not a priority, we have freedom on
fixing the value of Tc. Here we can fix it as the time-
delay span needed to obtain an unambiguous measure.
This would allow to have direct bit synchronization, with
all the benefits that can bring this in terms of complexity
and time to first fix (TTFF) reduction (e.g., no need
for bit synchro). For instance, Tc = 12 ms provides
unambiguous measure up to a high LEO (i.e., at 1200
km) with sensitivity performance @38 dB-Hz. This could
be a case in which the IoT device is connected and it can
externally download data information.

For the configuration of the signal bandwidth, we also
have different options. Considering the main target is the
optimization of the complexity, we consider a bandwidth in the
range of 1 to 5 MHz. This is also coherent with the bandwidths
used in practice for the IoT use case. Two possibilities may
be to consider the data rate or accuracy to tune the signal
bandwidth depending on the specific requirements of the use
case:

• Data rate: Considering Tc = 7.5 ms and a LoRa-like
signal [17] for the data transmission, we have a data rate
given by

Rb
.
=
BTc
Tc

, (10)

so that Rb = {1.72, 2.02} kbps for B = {1, 5} MHz,
respectively.

• Accuracy: Considering a chirp period given by the min-
imum Tc or greater, we have an accuracy < {7, 2} m
@40 dB-Hz for B = {1, 5} MHz, respectively.

Finally, based on these considerations for the chirp period
and signal bandwidth of the MDS signal, the corresponding
optimized complexity is:

• For Tc = 7.5 ms (unconnected device) C ∼ 2 · {105, 106}
for B = {1, 5} MHz, respectively.

• For Tc = 12 ms (connected device) C ∼ {4 · 105, 2 · 106}
for B = {1, 5} MHz, respectively.
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