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Abstract—We present in this paper a design for a monitor-
ization station that will be part of a network of receivers in
charge of providing a service for detection, characterization,
and localization of interfering signals in safety critical GNSS
environments. The purpose is to cover a wideband frequency
range from 800 MHz to 1900 MHz with a power level mask taken
from EGNOS and DFMC GBAS requirements. The proposed
design combines two four-element arrays with two USRP units for
collecting signals within the desired SNR margins. A comparative
simulation study has been done to evaluate different techniques
for interference detection, characterization, and estimation of its
angle of arrival. The results show that a combination of power
and kurtosis monitorization, both in temporal and frequency do-
mains, is a proper solution to detect different types of interfering
signals. In order to assure the best signal characterization, the
use of the three selected techniques serves to overcome their
respective limitations. For angle of arrival estimation, the fact
of working in a suboptimal array configuration provides more
robustness against outliers for certain geometries.

Index Terms—GNSS, Galileo, interference detection, jaming,
localization

I. INTRODUCTION

Presence of interfering signals in the GNSS spectrum,
located either in-band or in their vicinity, represent a thread
for safety critical positioning, navigation, or timing (PNT)
applications based on GNSS. In addition to the blind effect that
a strong interference signal typically would cause to a standard
GNSS receiver, also weaker signals, which could be uninten-
tionally generated, need to be addressed in those environments.
In this context, we are developing the GNSS Interference Mon-
itoring and Detection (GIMAD) System in the frame of ESAs
Navigation Innovation and Support Programme (NAVISP) to
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efficiently detect and support the location of threads that could
endanger satellite-based navigation activities. The equipment
built is planned to work standalone or to be integrated into a
network of several GIMAD units to widen the coverage area
and enable interference localization. Moreover, the product
supports the NAVISP objectives both from PNT user segment
and from GNSS ground segment perspectives: support to
law enforcement authorities, governmental users, agencies and
operators in the monitoring of threats that can endanger the
provision and usage of safety critical applications using satel-
lite navigation and monitoring of the RF Environment in areas
where GNSS ground infrastructure is deployed (e.g. EGNOS
/ Galileo reference stations or GBAS Ground Stations) and
where the threats, in case they occur, may have a global impact
on the provision of the system.

In this paper we present the design of the GIMAD unit.
Section 2 provides the requirements of the system and an
overview of the setup. Section 3 describes the state of the
art for interference detection, characterization, and angle of
arrival (AOA) estimation. The simulation study of the selected
techniques and the results obtained are described in section 4.
Finally, section 5 concludes the paper and gives some remarks
for future work.

II. SYSTEM REQUIREMENTS AND SETUP DESCRIPTION

The GIMAD unit targets to monitor the whole frequency
range from 800 MHz to 1900 MHz for detection, characteri-
zation, and AOA estimation of interfering signals. For the latter
case, which seeks the localization of the interfering transmitter
after combination of several GIMAD units, a requirement is
set to achieve an accuracy of 60 degrees in azimuth for 95% of
cases with a single interference source in GPS L1 and Galileo
E1 . The threshold of minimum signal power to be detected is



set from a combination of several EGNOS and DFMC GBAS
requirements and it is summarized in figure 1. The maximum
input power level outside the GNSS bands is set to 0 dBW.
In all the cases, these values are considered at the output port
of a 0 dBi gain antenna. As it can be seen, the system has
to deal with significant variations of power along the desired
frequency band. For reference purposes, figure 1 also provides
standard noise floor values and the maximum input power for
a selected USRP unit (NI USRP-2945). We can see that while
for some cases the input power must be reduced to protect the
USRP unit, at the GNSS bands the received signal needs to
be amplified by means of an LNA at the beginning of the RF
chain to keep enough SNR.

Fig. 1. Power level threshold for interference signal detection (solid line).

In order to fulfil the previous requirements, a whole setup
(GIMAD unit) has been designed which is essentially com-
posed by three main blocks: antenna front-end, reception
set and computer unit. The first block includes the antenna
(single or array) and the different RF components required
to deliver the collected analog signal to the inputs of the
next block inside the proper power level margins: amplifiers,
power splitters, bias-tee, coaxial cables, etc. The second block
is responsible of digitize, filter and down-convert the analog
signal into base-band digital IQ samples. For such purpose,
two USRP instruments are employed with a GNSS disciplined
reference clock to synchronize them. In addition, a GNSS
receiver is employed to deliver GNSS observables and internal
information. Finally, a computer unit is in charge of the storage
and processing of the datasets delivered by the previous block.

Figure 2 shows a scheme of the elements that conform the
two first blocks. The design of the setup aims to fulfil the next
purposes:
‚ GNSS monitoring: The upper branch in the scheme from

figure 2 allows to analyze GNSS observables acquired
through a GNSS receiver.

‚ In-band monitoring: Two of the outputs from the power
splitter connected to the single GNSS antenna provide
two channels to USRP-1 for monitoring raw data at
the GNSS bands around GPS L1 and L5 frequencies
(covering both GPS and Galileo).

‚ Out-of-band monitoring: The remaining bands covering
the 800-1900 MHz frequency range shall be also moni-

tored. Such wideband range includes both high and low
(e.g., GPS L2) input power requirements. To achieve this,
the remaining output from the power splitter provides
a channel for properly monitoring the sub-band around
GPS L2 frequency. A single wideband antenna is con-
nected to an attenuator to provide an additional channel to
USRP-1 for monitoring other sub-band with higher power
levels. The rest of sub-bands are acquired through the
array system connected to USRP-2 in a random sequenti
al strategy.

‚ Angle-of-arrival estimation: The capability to apply lo-
calization methods by acquiring signals from 4 synchro-
nized channels at any sub-band within 800-1900 MHz
is achieved by means of the array system connected to
USRP-2. Given that these elements are also employed
for the out-of-band scanning by default, the idea is to
only run the localization mode (the four channels acquire
data at the same frequency band) whenever the real-time
interference detection routines trigger an alarm at a given
band. The combination of two four-element arrays allows
to compensate the important differences of input power
along the wideband range to keep both proper SNR values
and safe power levels at the input of the USRP units in
all the cases. The elements of each array are distributed
to form a square shape with to λL1{2 of side length (GPS
L1 as a reference frequency).

Fig. 2. Scheme of antenna front-end and reception set of the GIMAD unit.
The description of the different elements from the antenna front-end is given
in figure 3.

III. STATE OF THE ART INTERFERENCE DETECTION,
CHARACTERIZATION, AND LOCALIZATION TECHNIQUES

Due to the historical importance of navigation and the
increasing use of GNSS-based applications nowadays, there
is a vast literature addressing the impact of interfering signals
and their mitigation in this field. Two particular aspects of
GNSS make this task more challenging compared against other
RF technologies: (1) by being designed to lie below the noise
level, GNSS signals are weak, so just a small power source can
cause problems; and (2), as a long-term satellite-based system



Fig. 3. Description of the different elements of the antenna front-end given
in scheme from figure 2.

broadcasting signals all over the Earth surface, no adaptability
to interference events can be expected from the transmitter
side.

A first step consists in the detection of the interference
itself. As described in section 3.1, this can be simply achieved
by monitoring a set of variables from the GNSS receiver,
whose selection generally depends on the interference sce-
nario. However, given that the nature of the interference is to
cause a clear degradation, its detection does not represent a
difficult issue and thus the research on this aspect is rather
limited. On the other hand, interference mitigation is a more
demanding aspect and several studies have addressed it from
different perspectives during the last years, but this aspect is
not envisaged for the GIMAD unit. However, there is not
an optimal solution valid for all type of scenarios, and the
use of any technique has associated a set of trade-offs. For
this reason, it is also important to properly characterize the
interfering signal and some methodologies to achieve this
objective are described in section 3.2.

Finally, localization of interference transmitters is a key
aspect for their effective clearance or impacts minimization.
However, a combination of more than one receiver is generally
required to achieve this purpose (at least 3 for static stations)
under certain geometrical conditions. There are three main
possibilities to estimate the localization of the transmitter
based on different observables: (1) the time difference of
arrival (TDOA) of a signal reaching each pair of receivers
[1] [2], (2) the power decay suffered by the signal properly
calibrated for being proportional to the travelled distance (e.g.,
[1]), and (3) the angle of arrival estimations as seen from
the different receivers. From the point of view from a single
GIMAD unit, the two first options only require time and power
measurements. However, the estimation of the angle of arrival
is not straightforward and section 3.3 provides methods to
properly address it.

A. Interference detection

Interfering signals clearly degrade the behavior of standard
GNSS receivers. Therefore, their detection can be achieved
simply by monitoring some variables on the reception chain.
Some examples can be found in (e.g., [2], [3], [4]). We can
classify these variables into two main categories depending on
which part of the GNSS receiver architecture are taken: prior
or after the PRN cross-correlation process (something like
level-1 and level-2 observables). The first group then allows a
quicker detection, while the second group provides additional
information about the impact on the receiver.

1) Pre-correlation techniques: In the first category, the raw
data complex samples collected by the receiver are analyzed.
Two main aspects are checked: statistics and power. In the
first case, it is exploited the fact that an interference-free
signal in the GNSS bands should be a zero-mean Gaussian
stochastic process. Then, a normality test can be applied
for evaluating the detection of interfering signals with non-
Gaussian properties, such as a goodness of fit measurement
of the histogram or autocorrelation of data snapshots. In
[5], ten well-known different techniques are analyzed under
typical interference models in a radiometry scenario, which
is equivalent to GNSS in this context, showing that the best
performance is obtained by simply evaluating the kurtosis of
the data snapshots. The only limitation of this approach is
that it has a blind spot for interfering signals with a 50% duty
cycle. For this reason, it is recommended to be complemented
with an additional normality test not blind at these situations.
The previous analysis [5] suggests the Anderson-Darling test
for this task. Another possibility, not included in [5], is to
evaluate the normalized sixth cumulant [6], which is given by
k6{µ

3
2, where:

k6 “ µ6 ´ 15µ4µ2 ´ 10µ2
3 ` 30µ3

2 (1)

and µn is the nth central moment. As a comparison, the
kurtosis is given by µ4{σ

4. This metric can cover the afore-
mentioned blind-spot of the kurtosis. The second aspect to
be checked with raw samples is the power level. As already
mentioned, this level corresponds to the background noise in
a GNSS band under an interference-free scenario. Therefore,
clear power variations from such reference level are indicators
of interference presence. The methodology to follow is simply
to monitor the time evolution of power estimates from data
snapshots comparing them against a given threshold. This
can be also done in an indirect way from the gain values
of the GNSS receiver provided by the automatic gain control
(AGC) unit. In addition, the power level can be checked in
the frequency domain by means of FFT of data snapshots.
Moreover, both time and frequency domains can be simul-
taneously scanned using the same techniques for interference
characterization described in next section 3.2, as done in (e.g.,
[7], [8]).

Finally, it is worth mentioning that there are further pre-
correlation techniques, such as to monitor the variables from
an adaptive notch filter applied to the data snapshots (e.g.,



[9], [10]) or to check the singular value decomposition of
their covariance matrix [11]. Both methods show a good
performance for detecting continuous wave tones but fail for
pulsed and chirp signals respectively.

2) Post-correlation techniques: The second category of
variables accounts for those obtained after cross-correlation
inside the GNSS receiver, such as C/N0 values, pseudo-range
and carrier phase deviation and position accuracy among other
parameters. Interfering signals have an impact on them, which
can be monitored by comparing the expected time evolution
of each parameter against certain thresholds to determine the
impact of an interference in the receiver in terms of accuracy,
integrity and continuity. Since the variables can be affected
by a wide variety of factors different from interference e.g.,
multipath or elevation of the transmitter satellite, thresholds
should be computed accounting for these effects [2] [12].

Another possibility is to analyze variations in the cross-
correlation curve [13], which is usually referred as signal
quality monitoring (SQM). The basis of this type of approach
is to check the statistical consistency between the nominal
correlation function and the cross-correlation samples, which
would be corrupted under the presence of interfering signals.
An important limitation of this kind of method is the difficulty
for discriminating between interference-induced effects and
natural multipath.

B. Interference characterization

Interfering signals can be generated by different type of
sources, both accidental, such as radiated harmonics from elec-
tronic instrumentation or signal leakage from a bad designed
RF system at a neighbor frequency band, or intentional, such
as jamming devices. Therefore, there is a wide variety of
interfering signals that can degrade the behavior of a GNSS
receiver.

Typically, we can classify RFI signals from its power
distribution in time and frequency domains. Figure 4 illustrates
this concept by showing the most common interfering signals:
single and multi-tone, wide-band noise, frequency modulated
(chirp) and a combination of them, with continuous or pulsed
transmission. Given that the performance of the mitigation
technique varies among the different cases, this type of charac-
terization benefits the proper selection of the required counter-
measurements.

Fig. 4. Classification of interfering signals according to their time-frequency
power distribution.

Time-frequency representation belongs to the field of spec-
tral estimation in signal processing. The most common tech-
nique is the spectrogram, whose discrete time expression is
defined as

Spn, fq “ |STFTpn, fq|2 (2)

where STFT is the short-time Fourier transform of the input
signal srns

STFTpn, fq “
n`L´1

ÿ

i“n

sriswri´ nse´j2πif (3)

and wrns is the analysis window of length L. This value
determines the tradeoff between temporal and frequency res-
olution. Moreover, the type of window defines an additional
tradeoff between width of the main lobe (spectral resolution)
and beam-ratio with respect to side-lobes (spectral leakage),
being Hann and Hamming windows common choices. In
spite of its limitations, the spectrogram has a relatively low
computational cost (availability of efficient Fourier transform
implementations) and it is suitable for real-time applications.

In order to overcome the time versus frequency resolution
tradeoff problem, another possibility of representation is the
Wigner-Ville distribution, whose discrete time implementation
is given by [3]:

WVDpn, fq “
ÿ

i

srn` iss˚rn´ ise´j4πif (4)

where srns is the input signal. In practice, a finite interval
of srns is available, so the previous equation is actually
multiplied by a window function (the summation has lower
and upper limits). Compared against the spectrogram, the price
paid to achieve high resolution in both domains is a higher
computational cost and the possible presence of cross-terms
in the results.

Finally, an additional means for interference characteri-
zation is based on analysis of cyclostationary properties of
the received signal. In general, while most communication
signals show temporal variability on their statistics (they are
non-stationary), they still exhibit periodic behavior (cyclosta-
tionarity). In this context, the autocorrelation function of a
cyclostationary signal xrts can be represented by a Fourier
series

Rxpt, τq “
ÿ

α

Rαx pτqe
´j2παt (5)

where Rαx is called the cyclic autocorrelation function (CAF)
of cycle frequency and can be computed as

Rαx pτq “ lim
TÑ8

1

T

ż T {2

´T {2

xpt`τ{2qx˚pt´τ{2qe´j2παtdt (6)

Its conjugate version is obtained after removing the conju-
gation of the second term inside the integration. Then, we
can compute the cyclic spectral correlation or cyclostationary
spectrum as the Fourier transform of the CAF by following the
Wiener-Khinchin theorem. The relevant aspect of this analysis
comes out by the fact that this type of spectral representation



enables the separability among signals with different modula-
tion which would be overlapped in the standard power spectral
density, as illustrated in Figure 5. Effective estimators for the
cyclic spectral correlation can be found in [14].

Fig. 5. Representation of cyclic spectral correlation (upper plots) and its
conjugate (bottom plots) for different signals with periodic statistics based on
the modulation of their components. From left to right: BPSK, AM and a
combination of both. The last case illustrates the capability of this kind of
representation for separating both modulation components, while the power
spectral density (contained in the spectral correlation for α “ 0) mixes them
up.

C. Estimation of angle of arrival

The main requirement to estimate the AOA or direction of
arrival (DOA) from a single receiver is to coherently combine
the inputs from several antennae, or antenna array. If we
include the narrow-band condition (delay increments can be
approximated by phase rotations), which holds for the GNSS
case (bandwidth is rather smaller than carrier frequency), then
AOA estimation is equivalent to spectral estimation [15]. In
this context, there are several standard approaches ranging
between three well-known techniques (summarized in table I):
‚ Beamformer: equivalent to a periodogram, it is the sim-

plest approach. Basically, it consists in scanning over
the product of the beamforming vector and the spatial
correlation matrix of the array samples in order to find
the maximum values, which are directly related to the
AOA of the incoming signals. Its main limitation is that
the angle resolution is directly proportional to the number
of array elements, which in general is rather low for a
standard setup.

‚ Capon: developed from the minimization problem of the
output power for spatial filter design, the method consists
in scanning over the inverse of the product of the beam-
forming vector and the inverse of the spatial correlation
matrix of the array samples to obtain the location of
the largest peaks, which are the AOA estimates. Despite
achieving better results than the beamformer, its angular
resolution is still rather limited.

‚ MUSIC: standing for Multiple Signal Classification, it is
a more complex approach that achieves the best angle
resolution. It requires the singular value decomposition
of the spatial correlation matrix of the array samples,
which can be computationally demanding for a large
number of antenna elements. The singular values obtained
are related to the power levels of the incoming signals
and the background noise, which is contained in all of

them. Then, the singular vectors associated to the smaller
singular values define the space without signal contribu-
tion (only noise). By combination with the beamforming
vector it can be built an equation whose solution provides
the estimation of the AOA of the incoming signals. The
main limitation of this technique is that the number of
array elements N determines the maximum number of
simultaneous interfering signals to N ´ 1.

TABLE I
BASIC PROCEDURES FOR AOA ESTIMATION FROM THE SPATIAL

CORRELATION MATRIX R

Algorithm: Beamformer Capon MUSIC
Define steering
vector a as a
function of aHpθqRapθq 1

aH pθqR´1apθq
1

aH pθqUUHapθq

AOA θ and
then scan over:
The term U in MUSIC is obtained from singular value decomposition
of R.

By reviewing the last research studies on spectral AOA
estimation, we can see that most of them are based on
solving practical issues of the MUSIC approach, such as the
extension to a broadband case [16] [17] or the reduction of
the computational complexity for large arrays [18], which are
not required for the present study case. Other AOA techniques
that have been also discarded are parametric subspace-based
methods like ESPRIT [19], which require linearly distributed
arrays, or deterministic parametric estimation methods such
as the Expectation Maximization (EM) algorithm [20] and the
Space Alternating Expectation Maximization (SAGE) [21] due
to their increased computational complexity.

IV. SIMULATION ANALYSIS

A. Detection analysis

From the interference detection techniques reviewed in
section 3.1, we will focus here on the pre-correlation ones
because they are not subjected to any particular characteristic
of the visibility scenario in a GNSS environment. In addition
to the monitorization of the received power level, which is the
reference methodology for detection of unexpected signals in a
known frequency band, we also select the monitorization of the
kurtosis due to the benefits in terms of calibration requirements
of the statistical methods (a normal distribution is assumed
by default). However, given that this technique has a blind
spot for signals with 50% of duty cycle, we also include two
alternatives (also in the category of statistical methods) for
covering this case: Anderson-Darling test and monitorization
of the 6th order cumulant.

A set of Monte-Carlo runs has been done to assess the
detection capability of the selected techniques under different
scenarios. In particular, four type of continuous wave interfer-
ence signals and five different interference-to-noise ratio (INR)
levels are selected. The detection algorithms are tested under
all resultant combinations. The number of simulation runs is
set to 105 and the length of the snapshot is 1024 samples. The



procedure simply consists in fixing a probability of false alarm
(pfa = 0.05) value to obtain a threshold level from the algo-
rithms metric by applying a series of noise sequences (absence
of interference signal). Then, the corresponding probability of
detection (pd) value is obtained by injecting the interference
signal into the simulations and setting the previous threshold
in the detection algorithm. It is important to remark that the
detection techniques are evaluated both against the standard
time-based snapshot of the interference signal model and its
frequency-based version obtained by means of FFT.

Before checking the results obtained, it is worth mentioning
that only the biggest INR value (3 dB) represents a situation
where the interference power level is above the noise floor. In
the other cases, the signal to be detected is either comparable
(0 and -5 dB) or clearly under the background noise (-10 and
-20 dB), being the latter a particularly challenging scenario.
The purpose of including such small power values here is
to reach the limits of detection capability from the different
techniques. Recall from figure 1 that the minimum INR value
expected in this project is higher than -10 dB, being most of
the cases well above the noise level.

Figure 6 shows the results obtained from the simulation
analysis. We can see that the power level algorithm achieves
high performance in all cases, but it is a method that requires
full and dedicated calibration for each receiver (GIMAD unit).
On the other hand, algorithms based on normalization tests
achieve a more limited performance under less restrictive cal-
ibration requirements. It is relevant to see how the application
of the FFT to the snapshots has a strong impact on these
techniques. As expected, algorithms based on normalization
tests do not work for noise-like signals with gaussian distri-
bution. Despite of the results, the combination of both power
and normalization methods is still useful given that the second
ones might be employed to adapt the threshold levels of the
former by performing a first estimation of the noise floor level.

In order to further compare the different normalization
algorithms evaluated, the same exercises have been done for
interfering signals with 50% of duty cycle, which is a known
blind spot for the monitorization of the kurtosis. The results
are shown in figure 7. The two alternatives (6th order cumulant
and Anderson-Darling test) show a rather limited performance
for the INR values evaluated. Again, a significant improve-
ment is obtained when using frequency-based snapshots for
the given interfering signal models, even for the kurtosis.
Therefore, the use of the latter technique, both in time and
frequency domains seems to be a sufficient means to combine
with the monitorization of the power level for interference
detection in all the scenario cases under test.

B. Comparison of characterization methods

The characterization methods described in section 3.2 pro-
vide means to identify the behavior of signals in both tem-
poral and frequency domains (spectrogram and Wigner-Ville
distribution) or to check cyclostationary aspects that typically
characterize certain type of communication signals. Figures 8
and 9 provide two selected simulation cases that try to illus-

Fig. 6. Probability of detection results as a function of INR for a pfa=0.05.
Each panel provides the results for a type of interfering signal. A color-
code indicates the methodology evaluated: power level monitorization (blue),
kurtosis monitorization (red), 6th order cumulant (green), and Anderson-
Darling test (black). Solid lines are used for time-based snapshots while
dashed lines indicate frequency-based snapshots.

Fig. 7. Probability of detection results for normalization methods as a function
of INR for a pfa=0.05. Each panel provides the results for a type of interfering
signal with a duty cycle of 50%. A color-code indicates the methodology
evaluated: kurtosis monitorization (red), 6th order cumulant (green), and
Anderson-Darling test (black). Solid lines are used for time-based snapshots
while dashed lines indicate frequency-based snapshots.

trate the most relevant properties of those methodologies. On
the first case a linear chirp signal interfering signal is properly
characterize by the spectrogram with limited resolution. On the
other hand, the Wigner-Ville distribution achieves very high
resolution, but the price paid is the appearance of artifacts in
the results (the real components are those that coincide with
their equivalent location at the corresponding spectrogram).
The cyclostationary spectrum provides the power spectral
density at the cut with α “ 0, which is blurred by the
displacement of the tone in the frequency domain for the
observation interval (as shown by the former techniques).
The values for α ą 0 do not provide relevant information.
The second case, illustrated in figure 9, is a BPSK interfer-
ing signal. While neither the spectrogram nor the Wigner-
Ville distribution provides further information than a power
increase region bounded to certain frequency interval, the
cysclostationary spectrum shows a unique pattern in the cyclic
frequential domain (alpha) which is characteristic for this type



of modulation. Overall, the combination of the three methods
covers their single limitations for characterization purposes.

Fig. 8. Example of characterization methods applied to a linear chirp
interfering signal with INR=3dB.

C. Analysis of angle of arrival estimation

Simulation runs have been also done to evaluate the perfor-
mance of localization algorithms. Three degrees of freedom
define the different scenarios evaluated: interference to noise
ratio (INR), number of simultaneous interference signals and
frequency band. The first parameter shows the degradation
caused by a reduction of the signal power. Values of 3, 0,
-5 and -10 dB are taken. The number of interference signals,
ranging from 1 to 4, provide information on the capability
of the different methods to obtain valid solutions in scenarios
with multiple signals due to their intrinsic angle resolution.

Fig. 9. Example of characterization methods applied to a BPSK interfering
signal with INR=3dB.

The type of signals is randomly selected in each run among the
same options employed during the detection analysis. Finally,
by taking into account that the physical separation of the four
elements in the arrays is set to λL1{2 (each side of the square
shape), four frequencies (carrier frequency of the interference
signal) are evaluated to check the impact of variation in angle
resolution and addition of ambiguity ranges: GPS L1, GPS
L5, 800 MHz and 1900 MHz. The number of simulations for
each scenario is set to 105.

Before entering the results, it is worth looking the general
behavior of the different algorithms for the same input. As
indicated in table I, the procedure is to define a steering vector
as a function of the shape of the array and the AOA (or



azimuth) and then to scan the corresponding equation. The
result is a function of the AOA known as spatial spectrum,
whose peaks provide the AOA estimations of the interference
signals. Figure 10 illustrates the differences between the results
obtained with the techniques under analysis. As we can see,
all of them properly estimate the AOA (indicated with a
vertical line) regardless the width of the corresponding peak.
However, beamformer and Capon show additional lobes that
could induce fake estimations events in this case. Regarding
the impact of INR reduction, we can see that the dynamic
range is reduced but the main peak still properly estimates
the AOA. The results obtained when increasing the number
of interference signals are illustrated in figure 11, where it
stands out the importance of having good angular resolution
for getting more accurate AOA estimations.

The fact of having secondary lobes in the spatial spec-
trum imposes the requirement to include a methodology
to determine the actual number of interference signals (it
would be wrong to assign an AOA estimation to each peak).
The methodology selected is the minimum description length
(MDL), which stablishes a decision criterion based on the
singular values from the spatial correlation matrix.

The results obtained in the analysis based on GPS L1
carrier frequency, which also apply for Galileo E1, are given
in figure 12, which provides the probabilities of detection
(pd) and the percentile for 30˝ of AOA error in absolute
value, which corresponds to an AOA error beam of 60˝ (our
reference requirement for a single interfering signal in GPS
L1 band). It is important to remark here that, in this context,
the probability of detection concept is related to the capability
of the procedure to obtain an AOA estimation for each of
the interfering signals injected, not to the detection of the
signals themselves. From the evolution of both variables as
a function of #s obtained in the results, we can see that the
algorithms with lower angular resolution loss more cases and
show larger errors in AOA estimation when increasing #s (less
peaks available). Even the case with #s=4, which is above
the limit for MUSIC, does not show a clear degradation of
this method with respect to the others (the relatively small
the number of elements in the array sets a performance limit
regardless the technique employed). As expected, all of them
have a degradation of the performance when decreasing INR.

A relevant aspect is to see that even for a single interfering
signal (#s = 1), all the methods have some percentage of AOA
estimations with relatively large errors. In order to know if
there is a systematic effect behind this issue, we can check the
AOA error distribution as a function of the AOA (or azimuth).
Figure 13 provides these results for different values of INR and
a single interference signal. We can see that, while most values
are concentrated around zero error, there are outliers around
AOA values of 0˝, 90˝, 180˝ and 270˝ (with a spreading
of the concentration areas as INR decreases). These values
correspond to the directions that are perpendicular to the sides
of the square-shaped array. The lowest spatial diversity in the
array happens at these geometries because the phase values
of two couples of elements coincide. In addition, due to the

λL1{2 separation of elements, there can be ambiguity between
the original AOA value and its opposite direction (this is why
the error goes up to 180˝).

At GPS L5, the carrier wavelength is longer than twice
the physical distance of the sides of the array, which would
the optimal one, thus producing a reduction of the angular
resolution achievable by the array (regardless the localization
technique). This effect can be imagined as a spreading of
the beams in the spatial spectrum from figures 10 and 11.
The results from figure 14 show a decrease of pd with
respect to GPS L1 wavelength, which is directly related to the
previous effect. However, the general loss of angular resolution
eliminates the appearance of outliers with 180˝ of error for
a single interfering signal. The percentile results reveal that
such effect produces a general improvement with respect to
the results obtained in L1. Therefore, having the array working
in suboptimal conditions clearly benefits the AOA estimation.

The next carrier frequency under analysis is 800 MHz,
which is the lowest value of the frequency range that aims to
be covered by the GIMAD unit. Figure 15 provide the results
obtained with that configuration. Essentially, by using a lower
frequency, the results obtained represent a step forward on the
effects seen in L5: there is a clear degradation in both metrics
due to the further reduction on angular resolution, although it
still compensates the impact produced by presence of outliers
in L1.

Finally, the last frequency analyzed is 1900 MHz, which
is located at the other end of the desired frequency range.
The novelty in this case is that the wavelength is shorter
than the optimal value from the physical dimensions of the
array, thus increasing the angle resolution at the price of
adding a range of ambiguity values (AOA’s with more than
one solution). Figure 16 provide the results obtained in this
case. Both probability metrics increase a bit with respect to L1
due to such improvement on angular resolution. However, in
terms of AOA error, the results for a single interference signal
are better than in L1 because the outliers are not concentrated
around 180˝ of error. Despite this, by checking the results of
the percentiles, we can see that the general behavior is quite
similar to the L1 case.

From the results obtained, to remove outliers at the price
of losing angular resolution is proved to be a proper solution.
We can achieve this effect simply by reducing the physical
separation between array elements. Therefore, a modification
in the GNSS array is made: to reduce the side of the square
shape from λL1{2 to λL1{3. The reduction cannot be applied
to the wideband array due to the physical dimensions of the
single antenna element selected (it is kept to λL1{2).

The simulations have been repeated under the proposed
array modification for carrier frequencies GPS L1 and GPS L5.
The results obtained are given in figures 17 and 18. From the
AOA error values with a single interference signal, we clearly
see that the outliers have been removed from the L1 case. The
results from the percentiles show a general improvement in all
the scenarios. The L5 case shows a minor degradation due to
the additional decrease of the angular resolution, although is



Fig. 10. Example of impact of INR variation in spatial spectrum for the different localization techniques for a single interference signal case. The actual
AOA value is marked with a vertical line.

Fig. 11. Example of impact of increase of interference signals in spatial spectrum for the different localization techniques. The actual AOA values are marked
with vertical lines.

Fig. 12. [Left side] Probability of detection (AOA context) for the different
techniques and number of interfering signals (#s) as a function of INR. [Right
side] Percentile 30˝ of AOA error in absolute value for the different techniques
and number of interfering signals (#s) as a function of INR. The frequency
evaluated is GPS L1 and the side of the square-shape array is λL1{2. The
color indicates the AOA estimation technique evaluated: beamformer in blue,
Capon in red and MUSIC in green. The marker indicates the number of
interfering signals injected in the simulation: | for #s = 1, ˆ for #s = 2, 4
for #s = 3 and ˙ for #s = 4 (the number of straight lines required to make
the symbol is equal to #s).

a price worth paid for the outlier removal in L1.

V. CONCLUDING REMARKS AND FUTURE WORK

The GIMAD framework has been presented. With the
purpose of designing a network of monitorization of inter-
fering signals in GNSS environments, a station unit has been
designed capable to monitor a wideband frequency range (800-
1900 MHz) to trigger an alarm event when an interfering
signal is present and to perform an AOA estimation for later
localization of its transmitter. Based on EGNOS and DFMC
GBAS requirements, a power level mask with a high dynamic
range along the frequency range is selected, which imposes
to address both high and low power inputs to avoid damaging
the USRP unit and to achieve enough SNR values.

Different simulation studies have been done to check the
performance of the different algorithms selected for each of
the targets of the project. For interference detection, whose
analysis has been limited to the pre-correlation methods, the
results show that the combination of the monitorization of
power level and kurtosis, both in time and frequency snap-
shots, provides a good means to cover all the scenarios under
analysis, where the second variable might enable an adaptative
calibration of the noise floor level. Regarding characterization,
the use of the three methodologies (spectrogram, Wigner-Ville
distribution and cyclostationary spectrum) properly captures
all the details that might be employed for identifying the



Fig. 13. Distribution of error in AOA for the corresponding value of AOA (or azimuth). Different values of INR are set on the different panels. A single
interference signal is considered using MUSIC (the other algorithms show the same type of behavior). The color indicates the number of points in the area
(density plot), as indicated in the vertical bar. The carrier frequency of the signals is set to GPS L1 and the length of the side of the four-element square-shaped
array is set to λL1{2.

Fig. 14. [Left side] Probability of detection (AOA context) for the different
techniques and number of interfering signals (#s) as a function of INR. [Right
side] Percentile 30˝ of AOA error in absolute value for the different techniques
and number of interfering signals (#s) as a function of INR. The frequency
evaluated is GPS L5 and the side of the square-shape array is λL1{2. The
color indicates the AOA estimation technique evaluated: beamformer in blue,
Capon in red and MUSIC in green. The marker indicates the number of
interfering signals injected in the simulation: | for #s = 1, ˆ for #s = 2, 4
for #s = 3 and ˙ for #s = 4 (the number of straight lines required to make
the symbol is equal to #s).

nature of the interfering signal. Finally, for AOA estimation,
the use of a higher resolution method like MUSIC achieves
better results. However, it has been found that to work under
suboptimal configuration arrays (i.e., with inter-element lower
than half of the corresponding wavelength) reduces the number
of outliers in the estimation (being avoided for the case
of single interfering signals), which clearly compensates the
widening effect in the corresponding beam from the spatial
spectrum.

The next step will consist in building a prototype of a
single GIMAD unit to tests its capabilities for interference
detection, characterization, and AOA estimation in a set of
field campaigns, including an initial calibration phase in an

Fig. 15. [Left side] Probability of detection (AOA context) for the different
techniques and number of interfering signals (#s) as a function of INR. [Right
side] Percentile 30˝ of AOA error in absolute value for the different techniques
and number of interfering signals (#s) as a function of INR. The frequency
evaluated is 800 MHz and the side of the square-shape array is λL1{2. The
color indicates the AOA estimation technique evaluated: beamformer in blue,
Capon in red and MUSIC in green. The marker indicates the number of
interfering signals injected in the simulation: | for #s = 1, ˆ for #s = 2, 4
for #s = 3 and ˙ for #s = 4 (the number of straight lines required to make
the symbol is equal to #s).

anechoic chamber.
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