
Synchronisation of Low-Cost Open Source SDRs for
Navigation Applications

Marco Bartolucci∗, José A. del Peral-Rosado†, Roger Estatuet-Castillo†, José A. García-Molina‡§,
Massimo Crisci‡, and Giovanni E. Corazza∗

∗DEI - Università di Bologna, Italy
Email: {marco.bartolucci4, giovanni.corazza}@unibo.it

†Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
Email: {JoseAntonio.DelPeral, Roger.Estatuet}@uab.cat

‡European Space Agency (ESA), Noordwijk, The Netherlands
Email: {Jose.Antonio.Garcia.Molina, Massimo.Crisci}@esa.int

§HE Space, The Netherlands

Abstract—This paper describes a new method for the syn-
chronisation of multiple low-cost open source software-defined
radios (SDR). This solution enables the use of low-cost SDRs
in interesting navigation applications, such as hybrid positioning
algorithms, interference localisation, and cooperative positioning
among others. Time synchronisation is achieved thanks to a time
pulse that can be generated either by one of the SDRs or by an
external source, such as a GNSS receiver providing 1PPS signal.
Experimental results show that the proposed method effectively
reduces the synchronisation offset between multiple SDRs, to less
than one sampling period.

I. INTRODUCTION

In the early 2000s, Software-Defined Radios (SDR) started
to gain popularity in the scientific community but, due to their
high cost, they have been accessible only to researchers and
not to ordinary users. This trend has changed in the last few
years with the introduction of low-cost SDRs on the market,
which has made this technology available to everyone. The
cost of these devices is at least one order of magnitude lower
than a comparable professional SDR. Moreover most low-
cost SDRs are open-hardware and open-software, hence fully
customisable. Professional SDRs offer time and frequency
synchronisation of multiple SDRs, enabling a wide range
of navigation applications. All of these applications require
accurate time and frequency synchronisation, but low-cost
SDRs generally do not support time synchronisation.

Time and frequency synchronisation of multiple SDRs
enables or improves a wide range of navigation applications.
It is possible to classify these navigation applications in two
main categories: receiver- and network-oriented applications.
Receiver-oriented applications are the ones that allow a single
receiver to compute its own position, while network-oriented
applications are the ones involving more than one receiver that
are not usually colocated. Receiver-oriented applications may
take advantage of the synchronisation of multiple SDRs to
build multi-band and/or multi-system receivers. An important
example of this possible use case is represented by hybrid
navigation applications, i.e., receivers able to determine their
own position by exploiting multiple sources or systems. This
kind of receivers perform ranging measurements from different

signals of opportunity (SoO) [1], such as WiFi, Bluetooth,
Ultra Wideband (UWB), 3G, 4G Long Term Evolution (LTE),
and prospectively 5G, as well as Global Navigation Satellite
Systems (GNSS), in order to solve the positioning problem.
Hence, these receivers must be able to tune their radios to dif-
ferent bands and demodulate different signals simultaneously.
This can be done by using multiple SDRs, but synchronisation
is required among them for time-based or frequency-based
ranging. Another possible application falling into this category
is represented by multi-band GNSS receivers, where different
GNSS signals in different frequency bands are simultaneously
processed, for better accuracy and robustness in harsh envi-
ronments [2]. An example of network-oriented application is
cooperative or peer-to-peer (P2P) positioning [3], in which
multiple GNSS users cooperate to achieve a position solution
in difficult environments. In this application, users need to
communicate with each other either to exchange navigation
data or to perform terrestrial ranging between users. The
communication between users or the terrestrial ranging can be
implemented using SDRs and synchronisation is mandatory for
time-based and frequency-based terrestrial ranging. Another
important network-oriented application is the detection and
localisation of GNSS jammers or spoofers: in this case multiple
sensor nodes monitor the GNSS bands and send snapshots of
the signal to a server in the cloud, which detects and localise
potential jammers using time difference of arrival (TDOA)
and frequency difference of arrival (FDOA) [4]. Sensor nodes
can be implemented using SDRs and strict synchronisation is
required for TDOA/FDOA-based ranging.

Although these navigation applications are feasible with
current professional SDRs, they cannot be exploited with
very low-cost equipment. In this paper, we propose and val-
idate an algorithm that enables sample-level synchronisation
of multiple low-cost SDRs by using an off-the-shelf GNSS
receiver. The reminder of this work is organised as follows:
in Section II, we introduce SDR; in Section, III we propose
a time synchronisation algorithm; in Section IV, we validate
the synchronisation method experimentally and we suggest a
simple statistical model for the synchronisation offset; finally,
we draw the conclusions and propose future work.

978-1-5090-3885-5/16/$31.00 ©2016 IEEE



RF Front end 
and Mixer ADC/DAC USB Interface

(a) Generic SDR

RF Front end 
and Mixer
RFFC5071/2

Transciever
MAX2837

ADC/DAC
MAX5864

CPLD
XC2C64A

MCU
LPC43XX

IF BBRF

(b) Selected development board

Fig. 1. SDR Architecture.

II. OPEN SOURCE SOFTWARE-DEFINED RADIOS

Different definitions of software-defined radio are possi-
ble and we adopt the one given in [5]: a software-defined
radio is a radio in which some or all of the physical layer
functions are software defined. In the last decade the cost of
SDRs has dropped, enabling a widespread diffusion of this
technology. Most of the low-cost SDRs are open-source and
open-hardware: schematics and PCB layouts are public; the
code of the firmware and software is available free of charge
and can be modified according to the users’ need. Example of
popular low-cost SDRs are RTL-SDR [6], a digital TV tuner
that may be used as SDR (receive only); HackRF One [7],
featuring a wide frequency range and a wide bandwidth (half-
duplex transmit and receive), BladeRF [8], featuring USB 3.0
(full-duplex transmit and receive).

The aforementioned SDRs share a common architecture,
shown in Figure 1(a): in receive mode, the signal coming
from the antenna is filtered, amplified, and downconverted to
baseband by the RF front end and mixer, then the signal is
discretised and quantised by an Analogue to Digital Converter
(ADC) and the samples are transmitted to a computer (host)
in charge of signal processing, via an USB interface. In
transmit mode, signal samples are fed to a Digital to Analogue
Converter (DAC) through the USB interface, then the signal is
upconverted, amplified by the RF front end, and transmitted.

A. Selected development board

Our selected development board (SDB) is HackRF One
[7], a low-cost open-source and open-hardware SDR, capable
of transmitting or receiving signals from 1 MHz to 6 GHz.
The ADC/DAC operates at up to 20 Msps (8 bit I/Q samples).
Baseband filter and transmit/receive gain are configurable by
software, and pin headers on the PCB allow future expansions.
The architecture of the SDB is shown in Figure 1(b) and
it is composed by three stages: RF, Intermediate Frequency
(IF), and baseband (BB). In receive mode, the RF signal is
converted to IF by an RFMD RFFC5071/2, a wideband syn-
thesiser with integrated 6 GHz mixer, and a Maxim Integrated
MAX2837 wireless broadband transceiver, is responsible for
the conversion from IF to BB and the ADC/DAC (codec)
functions. A Xilinx XC2C64A Complex Programmable Logic
Device (CPLD) acts as glue logic between the codec and
the NxP LPC43XX micro controller (MCU) which provides
the USB interface to the user. The same components are
responsible for the opposite functions in transmit mode. The
SDB provides clock input and clock output ports for frequency
synchronisation of multiple SDR. Time synchronisation is not
supported by the current firmware but, thanks to the hardware

and software openness, it is possible to use a time pulse
for time synchronisation purposes. The next section describes
in detail the synchronisation algorithm and the necessary
hardware connections.

III. SYNCHRONISATION ALGORITHM

In the following we tackle the synchronisation of SDBs in
receive mode. A similar approach may be applied to achieve
the same result in transmit mode. The algorithm can be also
applied with minor modification to other open source SDRs
with similar architectures. The idea is to use an expansion pin
header on the PCB to add new signals for time synchronisation:
the start of reception should be triggered by a time pulse;
the pulse may be generated by one of the SDBs or by
external hardware. Figure 2 shows the hardware connections
between two SDBs: the signal SYNC_IN (pin 16 of the
expansion header P28, top and bottom SDBs) is the input
for the synchronisation pulse. SYNC_CMD (pin 15 of the
expansion header P28, top SDB) is the pulse command signal.
We consider two configurations: in the first one (A), the pulse
command is generated by one of the SDBs; in the second
configuration (B) the pulse command is the 1PPS signal of a
GNSS receiver, i.e., a time pulse with a one-second period,
synchronised with GPS time. While configuration (A) does
not require additional hardware, it requires the receivers to
be colocated. In configuration (B), instead, SDBs may be
located far away from each other. Moreover, in this case,
the recordings are synchronised with GPS time. The signals
SYNC_IN and SYNC_CMD are connected to the CPLD,
as shown in Figure 3, along with other signals involved
in the receive mode. During the initial setup, the center
frequency, filters bandwidth, gains, and ADC sampling rate
are configured. Then, the ADC starts streaming the samples
of the received signal to the CPLD (signal ADC_DATA[7..0]).
The samples are available on both rising (I) an falling edge
(Q) of CODEC_CLK. The CPLD simply makes the data
(HOST_DATA[7..0]) available to the MCU on the rising edge

GNSS
receiver

1PPS

10 MHz
SYNC_IN

SYNC_CMD

12

12

(A)
(B)

Fig. 2. Synchronisation of two SDBs: hardware connections.

978-1-5090-3885-5/16/$31.00 ©2016 IEEE



CPLD MCU

ADC_DATA[7..0]

CODEC_CLK

HOST_DATA[7..0]

HOST_DISABLE

HOST_CLK

HOST_CAPTURE
XC2C64A LPC43XX

SYNC_IN SYNC_CMD

New Signals

USB

Fig. 3. CPLD and MCU signals.

of HOST_CLK, whose frequency is doubled with respect to
CODEC_CLK. The MCU communicates to the CPLD the
wish to start the recording, setting HOST_DISABLE to ’0’.
At this stage the MCU is ignoring the data samples and it
will continue until the CPLD sets HOST_CAPTURE to ’1’.
The CPLD controls HOST_CAPTURE in order to ensure the
correct alignment of interleaved I/Q samples. Once the I/Q data
alignment is correct, the MCU may finally start streaming the
samples via USB. When the recording phase ends, the MCU
pulls HOST_DISABLE high, to signal the CPLD the end of
the recording. A snippet of the original VHDL controlling the
signal HOST_CAPTURE is available in Listing 1.

Listing 1. ORIGINAL VHDL (SIMPLIFIED)�
-- MCU ignores data samples when HOST_CAPTURE = ’0’. The

following code guarantees that the MCU receives I/Q
interleaved samples with I samples in the odd positions
and Q samples in the even ones.

process(HOST_CLK)
begin
if rising_edge(HOST_CLK) then
if CODEC_CLOCK = ’0’ then
HOST_CAPTURE <= not HOST_DISABLE

end if;
end if;

end process;
� �
This architecture leads to the conclusion that signal

HOST_CAPTURE is a good candidate for time synchroni-
sation. In principle, it is sufficient to hold HOST_CAPTURE
low when SYNC_IN is low or HOST_DISABLE is high. This
should be enough to ensure that the synchronisation error is
below one sampling period. However, the time pulse must stay
high during the whole receiving phase, otherwise the stream of
samples to the user is interrupted. Therefore, this method does
not work with the 1PPS signal, which is typically a low duty-
cycle square wave. This approach may be improved by using
a latched version of the signal SYNC_IN, as shown in Listing
2. In this case, it is not required that the pulse command stays
high during the whole receiving phase and this approach works
with 1PPS signals.

Listing 2. MODIFIED VHDL (SIMPLIFIED)�
-- The MCU ignores data when HOST_DISABLE=’1’ or

sync_in_latched=’0’. The following code allows multiple
SDBs to start receiving samples synchronously.

process(HOST_CLK)
begin
if rising_edge(HOST_CLK) then
if CODEC_CLOCK = ’0’ then
HOST_CAPTURE <= not HOST_DISABLE and sync_in_latched;

end if;
end if;

end process;

-- When the MCU pulls HOST_DISABLE low, HOST_SYNC_CMD
becomes high (the synchronisation pulse is sent to the
other SDBs). sync_in_latched is high when HOST_DISABLE
is low and there is a rising edge of SYNC_IN; it is
low when HOST_DISABLE is high.

process(HOST_DISABLE, SYNC_IN)
begin
SYNC_CMD <= not HOST_DISABLE;
if HOST_DISABLE = ’0’ then
if rising_edge(SYNC_IN) then
sync_in_latched <= SYNC_IN;

end if;
else
sync_in_latched = ’0’;

end if;
end process;
� �
In order to validate the synchronisation algorithm, we are using
two different approaches in the next section, based on GNSS
and LTE signal processing.

IV. EXPERIMENTAL RESULTS

This section discusses the laboratory setup, the GNSS and
LTE validation approaches, and the experimental results on the
synchronisation offset. A statistical model is then proposed to
characterise the resulting synchronisation offset.

A. Experimental setup

The experimental testbed is located in the European Nav-
igation Laboratory (ENL) at the European Space Agency
(ESTEC, The Netherlands). A diagram of the test setup is
shown in Figure 4, where the signal source is either a GNSS
antenna (GNSS) or a LTE network emulator (LTE). A high-end
active GNSS antenna is located at the roof of the building in
open-sky conditions. The Spirent E2010S network emulator
generates the LTE signal from one base station (BS) at a
system bandwidth of 1.4 MHz in AWGN conditions, with a
signal-to-noise ratio (SNR) around 30 dB.

The input signal goes through a RF power divider and then
to the two SDBs. A reference signal of 10 MHz generated by
an active hydrogen maser is used to synchronise, in frequency,
the clocks of the LTE network emulator and the two SDBs.
The time synchronisation is achieved with square pulse of 1 Hz
obtained from either a GNSS receiver (1PPS) or an Arbitrary
Function Generator (AFG). Hardware connections between
the synchronisation pulse and the two SDBs, described in
Section III, are implemented in a prototyping PCB, as shown
in Figure 6. The signals received by the SDBs are recorded
at a sampling rate Fs by a laptop PC (host) and processed
using either the GNSS- or LTE-based approaches. In order
to obtain statistically stable results, experiments are repeated
1000 times. SDBs are reset after each recording, to ensure that
the experiments are performed in the same conditions. This
has required the modification of the MCU firmware and the
SDB Linux tools: a new function has been added to allow the
host to reset SDBs using the USB interface. A few recordings
experienced losses of samples at high sampling rates, because
the slow hard drive installed in the laptop could not cope with
the high data rate sample stream. To avoid this problem signals
are recorded in a tmpfs [9] virtual memory disk, a disk residing
in RAM memory. Another possible issue that may occur is due
to the drift of the host clock with respect to GNSS time: if the
host starts a recording when the 1PPS synchronisation pulse is

978-1-5090-3885-5/16/$31.00 ©2016 IEEE



RF Power 
Divider

SDB 1

SDB 0

Host

LTE Network 
Emulator

GNSS
GNSS 

Receiver

Arbitrary 
Function 

Generator

(1PPS)

Clock

(LTE)

(GNSS)

(AFG)

Fig. 4. Experimental setup of the laboratory.

Record Signal 
(SDB 0)

SoftGNSS 
v3.0

Record Signal 
(SDB 1)

SoftGNSS 
v3.0

Ephemeris +

+

�

dt0

dt1

Sync. Offset

(a) GNSS approach

Record Signal 
(SDB 0)

Record Signal 
(SDB 1)

#

#

UAB LTE SDR 
Receiver

UAB LTE SDR 
Receiver#

+
+

�
Sync. Offset

dt0

dt1

(b) LTE approach

Fig. 5. Diagram of validation approaches.

high, the CPLD will not be able to detect a rising edge and the
signal will not be recorded. To avoid this problem is possible
to use a GNSS receiver to synchronise the clock of the host,
using GPSD in combination with NTP [10].

B. GNSS validation approach

The GNSS validation approach is based on the estimation
of the position, velocity and time (PVT) solution using the
SoftGNSS v3.0 software GPS receiver [11]. This software was
originally meant to work at IF with real samples, but the
recordings captured by the SDBs are at BB and the samples are
complex. Therefore, we modified the acquisition and tracking
stages of SoftGNSS, in order to be able to work with this
kind of signals. A further modification to the acquisition and
the tracking phases has been done in order to use the same
satellites: only the satellites that are visible to both SDBs are
taken into account for acquisition and tracking, in order to
have comparable solution accuracies for both SDBs. Moreover,
the software requires at least 36 seconds of recorded signals,
in order to compute a PVT solution. This is due to the fact
that the receiver needs to demodulate the navigation data,
in order to extract the ephemeris and determine the orbit
of the visible satellites: the receiver needs to demodulate 5

Fig. 6. SDB connection board.

subframes, each composed by 300 bits (6 s, since the bit
time is 20 ms). The additional 6 seconds are needed because
the tracking phase may start in the middle of a subframe.
Since processing 36-seconds recordings is cumbersome and
time consuming, we propose an assisted GNSS (A-GNSS)
method: instead of retrieving the ephemeris data from the
signals, we download Receiver Independent Exchange Format
(RINEX) files coming from the International GNSS Service
(IGS) station located in Delft. IGS provides open access,
high quality GNSS data, products, and services in support of
research. The data downloaded from the IGS station is used
to assist the SoftGNSS receiver and allows to obtain a PVT
solution in ten seconds. The knowledge of the time of week
(TOW), which is the number of 1.5 seconds elapsed from the
beginning of the GPS week, is still required to compute the
pseudorange measurements and hence, to obtain the navigation
solution. The TOW can be read at the beginning of each
subframe, therefore requires to demodulate at least 6 seconds
of GPS signal. In order to further reduce the processing
time, we applied the so-called coarse time positioning method
[12], which allows to obtain a navigation solution without
the need of reading the TOW. In this method, the time of
week is treated as an additional unknown by the least squares
algorithm, therefore the unknown navigation solution vector is
(X,Y, Z, c dt, tW )T , where (X,Y, Z) is the position of the
receiver, dt is the clock offset between the GPS time and the
time of the receiver, c is the light velocity, and tW is the TOW.
The observation model relating pseudoranges to the navigation

978-1-5090-3885-5/16/$31.00 ©2016 IEEE



solution vector is given by

Pi =

√
(Xi −X)

2
+ (Yi − Y )

2
+ (Zi − Z)

2
+ (1)

+c dt+ c
fd,i
fL1

tW + ei, (2)

where (Xi, Yi, Zi) is the position of i-th satellite, fd,i is the
Doppler frequency, fL1 is L1 band center frequency, i.e.,
1575.42 MHz, and ei is a measurement error term. Using this
model, the least squares algorithm requires at least five visible
satellites in order to find a navigation solution. If the total
number of visible satellite is N , the geometry matrix, i.e., the
Jacobian matrix of the observation model, A ∈ MN×5(R) is
given by

A =


∆x1 ∆y1 ∆z1 1 cfd,1/fL1
∆x2 ∆y2 ∆z2 1 cfd,2/fL1

...
...

...
...

...
∆xN ∆yN ∆zN 1 cfd,N/fL1

 , (3)

where the first four columns are unchanged with respect to the
traditional least squares navigation algorithm [11], and the last
column is added for the TOW estimation. The synchronisation
offset between the two SDBs is computed after the PVT
solution, as the difference between the clock offsets of the two
SDRs, i.e., θ = dt0−dt1. The GNSS approach is summarised
in Figure 5(a).

Since GNSS signals have been specifically designed for
precise timing, the use of GNSS signals can be a natural choice
to validate the proposed synchronisation method. However, a
number of possible problems may arise using this approach.
The most important drawback of this validation method is that
the accuracy of the clock offset estimator is not constant and
depends on the number of visible satellites, on the carrier-to-
noise-density ratio (C/N0) of the received signals, and on the
geometry of the satellite constellation. The high variability of
the aforementioned accuracy and the fact that, occasionally
it is not easy to have the same five satellites visible to both
SDBs, make the use of this validation method impractical and
the analysis of results troublesome. An example of synchroni-
sation offset between the two SDBs obtained with the GNSS
approach is shown in Figure 7. The synchronisation offset is
estimated every 1 ms in a 5 seconds recording taken at a
sampling frequency Fs = 10 MHz. The synchronisation offset,
in this case, should be limited to ±1/Fs = ±100 ns but, in
spite of the fact that the majority of the estimates fall within
this interval, many outliers are present. This phenomenon
is due to the low accuracy of the clock offset estimation
caused by low C/N0. Therefore, the GNSS approach is in
practice cumbersome with the original least squares algorithm
because it requires 36 seconds of data and it is not accurate
enough when using the coarse time method with the described
modification of the SoftGNSS receiver. In the remainder of
this section, we present a simpler yet effective LTE-based
validation approach.

C. LTE validation approach

Terrestrial signals can be used as signals of opportunity
to validate or calibrate the synchronisation procedure, in case
there is a lack of visible GNSS satellites. This opportunistic
approach can be based on cellular systems (e.g. 2G, 3G or 4G),

0 1 2 3 4 5

time (s)

-200

-150

-100

-50

0

50

100

150

200

250

S
y
n
c
h
ro

n
iz

a
ti
o
n
 o

ff
s
e
t 
(n

s
)

Fig. 7. Synchronisation offset using the GNSS approach.

broadcast television (e.g. DVB-T), Wi-Fi, Bluetooth or any
other radio signal. The selection of the opportunistic system
depends on the signal availability, and the signal bandwidth
to achieve a certain time-delay estimation (TDE) accuracy.
An accessible time reference within the signal can be useful
to validate the synchronisation over time. Thus, this paper
considers the 4G LTE system due to its wide adoption in
urban environments, high signal bandwidth (up to 20 MHz),
and periodical time reference, i.e. system frame number (SFN)
every 10 ms. In contrast to the GNSS approach described in
the previous section, the LTE validation procedure is based on
the estimation of the time-delay from the signal transmitted by
a single base station with unknown location.

As it is shown in Figure 4 and 5(b), the LTE signal is first
split and fed to the two SDBs that record a snapshot of 200
ms. The signal is then resampled to 2 MHz. The UAB LTE
SDR software receiver, which is described in [13] and [14], is
used to acquire and track the 1.4-MHz LTE signal captured by
each SDB. The noise bandwidth of the delay-locked loop and
frequency-locked loop is set to 30 Hz and 50 Hz, respectively,
and the resolution of the TDE is defined to 0.25 ns. The
SFN is calculated by using the LTE Cell Scanner software
developed by [15]. Only ten LTE radio frames are tracked, and
the last time-delay estimate of each processed capture is used
to calculate the synchronisation offset between the two SDBs.
The synchronisation is validated between multiple captures by
using the time between recordings and the SFN.

D. Synchronisation offset

The probability density function (PDF) of the synchro-
nisation offset is computed based on the LTE approach, by
considering the 1PPS and AFG pulses. As it is shown in Figure
8, the resulting synchronisation offset is within ±1/Fs, i.e.,
±200, ±100 and ±50 ns for Fs equal to 5, 10 and 20 MHz,
respectively. This test confirms the achievable accuracy of the
proposed synchronisation procedure, which is bounded by the
sampling period of the SDB. In addition, the same results are
obtained with both synchronisation pulses, demonstrating the
flexibility and reproducibility of the proposed algorithm.

978-1-5090-3885-5/16/$31.00 ©2016 IEEE



−200 −150 −100 −50 0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025
P

D
F

Synchronization offset (ns)

 

 

Fs = 5 MHz
Fs = 10 MHz
Fs = 20 MHz

 

 

1PPS

AFG

Fig. 8. PDF of the synchronisation offset using the LTE approach.

−10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

TDE error (ns)

P
D

F

 

 

Fs = 5 MHz

Fs = 10 MHz

Fs = 20 MHz

 

 

1PPS

AFG

Fig. 9. PDF of TDE error with the LTE approach.

These results are validated by measuring the error of the
TDE. As it is shown in Figure 9, the PDF of this error is
confined within ±5 ns. Thus, the estimation error of the test
practically has no effect on the results. The mean µθ and
standard deviation σθ of the synchronisation offset and the
mean µτ and standard deviation στ of the TDE error can be
seen in Table I(a).

The main difference between the use of a synchronisation
pulse generated by a GNSS receiver and a signal generator
is the clock drift. Since the GNSS receiver is synchronised
to the accurate atomic clocks of the satellites, the resulting
square pulse is very stable. In contrast, the synchronisation
pulse of the AFG has a clock drift due to its local oscillator.
This effect can be observed in Figure 10, where the TDE of a
single SDB is plotted over time. The TDE obtained with the
AFG for different signal captures has a noticeable drift, which
is wrapped to 10 ms (i.e., length of a radio frame) in the case
of LTE, while there is no TDE drift with 1PPS.

TABLE I. MEAN µθ AND STANDARD DEVIATION σθ OF THE
SYNCHRONISATION OFFSET AND TDE ERROR FOR THE LTE APPROACH.

(a)
Sampling Signal Sync. Sync. offset TDE error
frequency source pulse µθ (ns) σθ (ns) µτ (ns) στ (ns)

5 MHz LTE AFG 1.45 82.56 0.40 1.34
1PPS -0.55 80.10 0.44 1.34

10 MHz LTE AFG 2.12 40.19 0.47 1.32
1PPS 0.91 40.69 0.42 1.36

20 MHz LTE AFG 0.60 19.73 0.49 1.46
1PPS 0.81 20.62 0.13 1.49

(b)
Signal Normalised Sync. offset
source µθ (samples) σθ (samples)

LTE 0.01 0.40

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Time (s)

T
D

E
 (

n
s
)

 

 

Fs = 5 MHz

Fs = 10 MHz

Fs = 20 MHz

 

 

1PPS

AFG

Fig. 10. Synchronisation offset over time with the LTE approach.

E. Statistical model of the synchronisation offset

Due to the familiarity of the previous test results, a sta-
tistical model is here defined to characterise the synchronisa-
tion offset of the proposed algorithm. For this purpose, the
synchronisation offset is normalised by 1/Fs for each test,
resulting in the bar plot of Figure 11. These results lead to
the conclusion that a truncated normal distribution [16] can fit
the synchronisation offset to the algorithm. Thus, the resulting
synchronisation offset can be modelled as

θ ∼
{N (µθ, σθ), if θ ∈ (−1, 1),

0, otherwise,
(4)

where the PDF of the truncated Gaussian distribution is

f(θ, µθ, σθ) =

1√
2πσ2

exp

{
− (θ − µθ)2

2σ2

}
1

2
erf

{
1− µθ
σθ
√

2

}
− 1

2
erf

{−1− µθ
σθ
√

2

} , (5)

and erf {·} is the error function. The truncated normal distri-
bution is shown in Figure 11 by using the fitting parameters of
Table I(b), obtained with maximum likelihood estimators [16].

978-1-5090-3885-5/16/$31.00 ©2016 IEEE



−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized synchronization offset (samples)

P
D

F

 

 

Estimation

Model

Fig. 11. Statistical model of the synchronisation offset

The observed resemblance suggests the validity of the model
and confirms the performance of the proposed synchronisation
method, whose accuracy is confined within a sampling period.

V. CONCLUSION

This paper proposes a sample-level time synchronisation
method for multiple low-cost software-defined radio (SDR),
along with a statistical model for the synchronisation offset.
The synchronisation algorithm has been implemented on a
low-cost SDR platform, by using an off-the-shelf GNSS re-
ceiver to provide a time reference. Experimental tests has
been conducted to validate the capability of this approach to
reduce the synchronisation offset to less than one sampling
period. Time synchronisation of multiple radios enables a
wide range of navigation-oriented applications, for a fraction
of the cost of professional SDR equipment. Future work is
aimed to demonstrate promising navigation solutions, such as
hybrid localisation, interference detection and localisation, or
cooperative positioning.

ACKNOWLEDGMENT

This work was partially supported by the University of
Bologna - Doctoral School in Electronic, Telecommunications
and Information Technology and by the ESA under NPI
programme No. 4000110780/14/NL/AK.

DISCLAIMER

The views presented in the paper represent solely the
opinion of the authors and not necessarily the view of ESA.

REFERENCES

[1] D. Dardari, P. Closas, and P. M. Djurić, “Indoor tracking: Theory, meth-
ods, and technologies,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 4, pp. 1263–1278, 2015.

[2] D. Chen, W. Pan, P. Jiang, J. Jin, T. Mo, and J. Zhou, “Reconfigurable
dual-channel multiband RF receiver for GPS/Galileo/BD-2 systems,”
IEEE Transactions on Microwave Theory and Techniques, vol. 60,
no. 11, pp. 3491–3501, Nov 2012.

[3] L. Deambrogio, C. Palestini, F. Bastia, G. Gabelli, G. E. Corazza, and
J. Samson, “Impact of high-end receivers in a peer-to-peer cooperative
localization system,” in Ubiquitous Positioning Indoor Navigation and
Location Based Service (UPINLBS), 2010, Oct 2010, pp. 1–7.

[4] J. A. Garcia-Molina and M. Crisci, “Cloud-based localization of GNSS
jammers,” in Proceedings of the 28th International Technical Meeting
of The Satellite Division of the Institute of Navigation (ION GNSS+
2015), September 2015, pp. 3289 – 3295.

[5] SDR Forum, “SDRF cognitive radio definitions,” http://www.sdrforum.
org/pages/documentLibrary/documents/SDRF-06-R-0011-V1_0_0.pdf,
2007, [Online; accessed 09-June-2016].

[6] “RTL-SDR.com, RTL-SDR (RTL2832U) and software defined radio
news and projects. also featuring Airspy, HackRF, FCD, SDRplay and
more.” http://www.rtl-sdr.com, [Online; accessed 09-June-2016].

[7] “HackRF One, an open source SDR platform,” https://greatscottgadgets.
com/hackrf/, [Online; accessed 09-June-2016].

[8] “bladeRF - the USB 3.0 Superspeed Software Defined Radio,” http:
//nuand.com, [Online; accessed 09-June-2016].

[9] “tmpfs documentation,” https://www.kernel.org/doc/Documentation/
filesystems/tmpfs.txt, [Online; accessed 09-June-2016].

[10] “GPSD time service howto,” http://www.catb.org/gpsd/
gpsd-time-service-howto.html, [Online; accessed 09-June-2016].

[11] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen,
A software-defined GPS and Galileo receiver: a single-frequency ap-
proach. Springer Science & Business Media, 2007.

[12] F. S. T. Van Diggelen, A-GPS: Assisted GPS, GNSS, and SBAS. Artech
House, 2009.

[13] J. A. del Peral-Rosado, J. M. Parro-Jiménez, J. A. López-Salcedo,
G. Seco-Granados, P. Crosta, F. Zanier, and M. Crisci, “Comparative
results analysis on positioning with real LTE signals and low-cost
hardware platforms,” in 2014 7th ESA Workshop on Satellite Navigation
Technologies and European Workshop on GNSS Signals and Signal
Processing (NAVITEC), Dec 2014, pp. 1–8.

[14] J. A. del Peral-Rosado, J. A. López-Salcedo, G. Seco-Granados,
P. Crosta, F. Zanier, and M. Crisci, “Downlink synchronization of LTE
base stations for opportunistic ToA positioning,” in 2015 International
Conference on Location and GNSS (ICL-GNSS), June 2015, pp. 1–6.

[15] “Evrytania LLC, LTE cell scanner,” https://github.com/Evrytania/
LTE-Cell-Scanner, [Online; accessed 09-June-2016].

[16] A. C. Cohen, “Estimating the mean and variance of normal populations
from singly truncated and doubly truncated samples,” Ann. Math.
Statist., vol. 21, no. 4, pp. 557–569, 12 1950. [Online]. Available:
http://dx.doi.org/10.1214/aoms/1177729751

978-1-5090-3885-5/16/$31.00 ©2016 IEEE




